
Composable Metamodeling 
Environment

Akos Ledeczi
Institute for Software Integrated Systems

Vanderbilt University

http://www.isis.vanderbilt.edu



Model Integrated Computing

Model
Interpretation

Application
Domain

App.
1

App.
2

App.
3

Application 
Evolution

Environment 
Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Interpreters

Models

DSDE

Model Builder



Signal Flow Models



Signal Flow MetaModels



Signal Flow Constraints

• Event-based and on-
demand

• Context
• Based on the Object 

Constraint Language 
(OCL)

• Priority



MetaMGA GME
Core

GME GUI

Browser

Add-on

Other GUI

Interpreter

Constraint
Manager

GME 2000 Components



• COM-based modular architecture
• Database storage
• Distributed, multi-user access
• Type inheritance
• Libraries
• Event-based constraint manager
• Multi-level undo/redo
• GME-, paradigm-, project-specific help

GME 2000 Features



Design goals

• Simplify metamodels (increase 
readability)

• Reuse existing metamodels
• Compose paradigms from 

subparadigms
• Create metamodel libraries
• Do NOT modify reused metamodels



New features

• Multi-sheet capability:
– Proxy: Reference to a UML class
– represents the exact same object
– only attribute: abstract

• New operators:
– Equivalence
– Implementation inheritance
– Interface inheritance



Equivalence (union)

• Two objects are the “same”, i.e. a 
new object is created that is the 
union of the two

• Represent the points where two 
subparadigms join together

• Can be emulated by a new UML class 
derived from both and making the 
originals abstract



Implementation Inheritance

• Finer control over inheritance
• Analogous to private inheritance in 

C++
• Inherits what’s “inside” a class:

– Attributes
– All composition relations where given 

class is the parent



Interface Inheritance

• Finer control over inheritance
• Analogous to interface inheritance in 

Java
• Inherits what’s “outside” a class:

– All associations
– All composition relations where given 

class is the child



Inheritance cont’d.

• Can be emulated using regular UML, 
but only by modifying original 
metamodel

• The union of implementation and 
interface inheritance is pure UML 
inheritance (operators are applied 
sequentially in any order)


