Adaptive Object-Models: With Application to Medical Observations 10/28/01

Adaptive Object-Models for | mplementing Business Rules
Joseph Yoder, Federico Balaguer, Ralph Johnson

Position Paper for Third Workshop on Best-practices
for Business Rules Design and Implementation

Software Architecture Group — Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
yoder @refactory.com, [balaguer|johnson] @cs.uiuc.edu

Abstract

Many object-oriented information systems share an architectural style that emphasizes flexibility and
run-time configurability. Business rules are stored in a database instead of in code. The object model that the
user cares about is part of the database, and the object model of the code is just an interpreter of the users
object model. We cal these systems “Adaptive Object-Models’, because the users object model is
interpreted at runtime and can be changed with immediate (but controlled) effects on the system interpreting
it. This paper is a submission for the Third Workshop on Best-practices for Business Rules Design and
Implementation and describes the Adaptive Object-Model architecture as an example of use for implementing
dynamic Business Rules.

[. Introduction

Customers require systems to adapt more easily to changing business needs, that they meet their
unique requirements, and to scale to large and small installations [Rouvell2000]. This is usually done by
moving certain aspects of the system, such as business rules, into a database so they can be easily changed.
The resulting model allows for a system to quickly adapt to changing business needs by simply changing
values in the database rather than code. It also encourages the development of tools that allow decision-
makers and administrators to introduce new products without programming and to make changes to their
business models at runtime. This can reduce time-to-market of new ideas from months, to weeks and days.
Therefore, the power to customize the system is placed in the hands of those who have the business
knowledge to do it effectively.

Architectures that can dynamically adapt at runtime to new user requirement are sometimes called a
"reflective architecture” or a "meta-architecture”. This paper focuses on a particular kind of reflective
architecture that has been given many names. It was called the "Type Instance pattern” in a tutorial at
OOPSLA'95 [GHV95]. This paper calls it the "Adaptive Object-Model (AOM) architecture". Most of the
systems we have seen with an Adaptive Object-Model are business systems that manage products of some
sort and are extended to add new products, and we have called it "User Defined Product architecture” in the
past [JO98]. These systems have also been called “Active Object-Models’ [Foote98] and “Dynamic Object
Models’ [Riehle2000]. Martin Fowler's “knowledge-level” is usually just another name for an Adaptive
Object-Model.

An Adaptive Object-Model is a system that represents classes, attributes, and relationships as
metadata. It is amodel based on instances rather than classes. Users change the metadata (object model) to
reflect changes in the domain. These changes modify the system’s behavior. In other word, it stores its
Object-Model in a database and interprets it. Consequently, the object model is active, when you change it,
the system changes immediatdly.

Adaptive Object-Models: With Application to Medical Observations 10/28/01

2. Adaptive Object-Models

Adaptive Object-Models provide an alternative to traditional object-oriented design. Traditiona
object-oriented design use classes for describing the different types of business entities and associates
attributes and methods with them. The classes model the business, so a change in the business causes a
change to the code and leads to a new version of the application. An Adaptive Object-Model does not model
these business entities as classes. Rather, they are modeled by descriptions that are interpreted at run-time.
Thus, whenever a business change is needed, these descriptions are changed which are then immediately
reflected in the running application.

Adaptive Object-Model architectures are usually made up of several smaller patterns. TypeObject
[Johnson9g] is used to separate an Entity from an EntityType. TypeObject provides a way to dynamically
define new business entities for your system. Entities have Attributes, which are implemented with the
Property pattern, and the TypeObject pattern is used a second time to separate Attributes from AttributeTypes.
As is common in Entity-Relationship modeling, an Adaptive Object-Model usualy separates attributes from
relationships.

The Strategy pattern is often used to define the behavior of an EntityType. These strategies can
evolve to a more powerful rule-based language that gets interpreted at runtime for representing changing
behavior. Finally, there needs to be support for reading and interpreting the data representing the business
rules that are stored in the database and there is usually an interface for non-programmers to define the new
types of objects, attributes and behaviors needed for the specified domain.

* TypeObject

Most object-oriented languages structure a program as a set of classes. A class defines the structure
and behavior of objects. Most object-oriented systems use a separate class for each kind of object, so
introducing a new kind of object requires making a new class, which requires programming.
However, if the difference between different types of classes is small enough, the objects can be
generalized and the difference between them described by parameters. The TypeObject pattern splits
a class into two classes, one the type of the first, and then to replace subclasses of the original with
instances of the type class (see Figure 1).

Before SomeClass After Entity

-specificAttribues : typ

+someQOperationsi
‘ 4 0.n

SubClass1 SubClass2 SubClassN EntityType

-sharedAttributes : typg
+typeOperations|

Figure1l- TypeObject

TypeObjects can be used in afactory scheduling system to replace subclasses of Product and Machine
with instances of ProductType and MachineType. It can be used in an airline scheduling system to
replace subclasses of Airplane with instances of AirplaneType [Coad1992]. It can be used in a
telecommunications billing system to replace subclasses of NetworkEvent with instances of
NetworkEventType. In all these cases, the difference between one type of object and another is
primarily their data values, not their behavior, so the TypeObject pattern works well.

Adaptive Object-Models: With Application to Medical Observations 10/28/01

Property

The attributes of an object are usually implemented by its instance variables. A class defines the
instance variables of its instances. If objects of different types are dl the same class, how can their
attributes vary? The solution is to implement attributes differently. Instead of each attribute being a
different instance variable, make an instance variable that holds a collection of attributes (Figure 2).

The core of an Adaptive Object-Model is a combination of TypeObject and Property [Foote98]. The
TypeObject pattern divides the system into Entities and EntityTypes. Entities have properties. But
usually each property has atype, too, and each EntityType then specifies the types of the properties of
itsentities. A PropertyTypeis usually more like a variable declaration than like an abstract data type.
It often keeps track of the name of the property, and also whether the value of the property is a
number, a date, a string, etc. The result is an object model similar to the following: Sometimes
objects differ only in their properties. For example, a system that just reads and writes a database can
use a Record with a set of Properties to represent a single record, and can use RecordType and
Property Type to represent atable.

Before After

Property
Entity Entity o.n
[————————<{-name : String = firstAttribute
-firstAttribute : String = Any attributes |-type : String = String
-value : String = Any

Figure 2 - Properties

Usually different kinds of objects have different kinds of behaviors. For example, maybe records
need to be checked for consistency before being written to a database. Although many tables will
have a simple consistency check, such as ensuring that numbers are within a certain range, afew will
have a complex consistency checking algorithm. Thus, Property isn't enough to eliminate the need
for subclasses. An Adaptive Object-Model needs a way to represent the relationships and the
behavior of objects.

Entity-Relationship

Attributes are properties that refer to immutable values like numbers, strings, or colors. Relationships
are properties that refer to other entities. Relationships are usually two-way; if Gene is the father of
Carol then Caral is the daughter of Gene. This distinction, which has long been a part of classic
entity-relationship modeling and which has been carried over into modern object-oriented modeling
notations, is usualy a part of an Adaptive Object-Model architecture. The distinction often leads to
two subclasses of properties, one for attributes and one for relationships.

One way to separate attributes from associations is to use the Property pattern twice, once for
attributes and once for associations. Another way is to make two subclasses of Property, Attribute
and Association. An Assaciation (called Accountability by Fowler and Hayes [Fowler97, Hay96])
would know its cardinality. A third way to separate attributes from associations is by the value of the
Property. Suppose there is a class Value whose subclasses are all immutable. Typical values would
be numbers, strings, quantities (numbers with units), and colors. Properties whose value is an Entity
are associations, while properties whose value is a Vaue are attributes. It is interesting that few

Adaptive Object-Models: With Application to Medical Observations 10/28/01

programming language designers seem to feel the need to represent these relationships, but most
designers of systems with Adaptive Object-Models do.

Strategies and Rule Objects

Business rule for object-oriented systems can be represented in many ways. Some rules will define
the types of entities in a system along with their attributes. Other rules may define legal subtypes,
which is usually done through subclassing. Other rules will define the legal types of relationships
between entities. These rules can aso define basic constraints such as the cardinality of relationships
and if a certain attribute is required or not. Most of these types of rules deal with the basic structure
and have been previously discussed on how AOMs deal with adapting these as runtime.

However, some rules can not be defined thisway. They are more functional or procedura in nature.
For example, you may have a rule that describes the legal types of values that an attribute can have.
Or, there may be a rule that states that certain entity-relationships are only legal if the entities have
certain values and other constraints are met. These business rules become more complex in nature
and AOMs use Srategies and RuleObjects [Arsanj99, 2000] to handle them.

AOMs often start with some simple Strategies that are the basic functions needed for the new
EntityTypes. These Strategies can be mapped to the EntityType through descriptive information that
isinterpreted at runtime. A Strategy is an object that represents an algorithm. The Strategy pattern
defines a standard interface for afamily of algorithms so that clients can work with any of them. If an
object’s behavior is defined by one or more strategies then that behavior is easy to change.

Each application of the Srategy pattern leads to a different interface, and thus to a different class
hierarchy of Srategies. In a database system, strategies might be associated with each property and
used to validate them. The Strategies would then have one public operation, validate. But Strategies
are more often associated with the fundamental entities being modeled, where they implement the
operations on the methods.

However, as more powerful business rules are needed, these Srategies can evolve to become more
complex such that they are built up or interpreted at runtime. These can be either primitive rules or
the combination of business rules through application of the Composite pattern. If the business rules
are workflow in nature, you can use the Micro-Workflow architecture as described by Manolescu
[Manoles2000]. Micro-Workflow describes classes that represent workflow structure as a
combination of rules such as repetition, conditional, sequential, forking, and primitive rules. These
rules can be built up at runtime to represent a particular workflow process.

Figure 3 is a UML diagram of applying the TypeObject pattern twice with the Property pattern and
then adding Strategies/RuleObjects for representing the behavior. This resulting architectureis called
the TypeSguare pattern [Y oder2002] and is often seen in adaptable systems with knowledge levels as
described in this chapter.

Interpretersof the Metadata

Metadata for describing the business rules and objects model is interpreted in two places. The
first is where the objects are constructed otherwise known as instantiating the object-model. The
second is during the runtime interpretation of the business rules.

Adaptive Object-Models: With Application to Medical Observations 10/28/01

Entity o.n type EntityType rule Rule
0..n
properties| 0..n 0..n | properties
Property PropertyType PrimRule CompositeRule
-name : String
0..n type |yyne : Type

Figure3 - Type Square

The information for describing the types of entities, properties, relationships, and behaviors are
stored in a database for runtime manipulation, thus allowing for the business model to be updated
and immediately reflected in applicationsinterpreting the data.

Regardless of how the data is stored, it is necessary for the data to be interpreted to build up the
adaptive object-model that represents the real business model. |f an object-oriented database is
used, the types of objects and relationships can be built up by simply instantiating the
TypeObjects, Properties, and Srategies. Otherwise, the metadata is read from the database for
building these objects, which are built using the Interpreter and Builder pattern.

The second place where the Interpreter pattern is applied is for the actual behaviors associated
with the business entities described in the system. Eventualy after new types of objects are
created with their respective attributes, some meaningful operations will be applied to these
objects. If these are simple Strategies, some metadata might describe the method that needs to be
invoked along with the appropriate Strategy. These Strategies can be plugged into the
appropriate object during the instantiation of the types.

However, if more dynamic rules are needed, a domain specific language can be designed using
rules-objects [Arsanj98, 2000, 2001]. This approach has been caled Grammar-oriented Object
design (GOOD) [Arsan98, 2001]. For example, primitive rules can be defined and composed
together with logical objects that form a tree structure that is interpreted at runtime. This is
exactly how the business rules are described in Manolescu’ s Micro-Workflow architecture.

When dealing with functions, you need to have ways for dealing with constants and variables,
along with constraints between values. SmartVariables [Foote98] can be useful for triggering
automatic updates or validations when setting property values.

Table lookup is often used for dealing with constants or keeping track of variables. Sometimes,
no matter how hard you try, the needs of the system become so complicated that the only solution
is to create a rule language [Arsanj2000] using grammars, abstract syntax trees, constraint
languages, and complex interpreters. The important thing to remember is to only evolve the
language as the need dictates. The temptation can overtake a devel oper to create a new language
that actually will make the maintenance and evolution of the application more difficult than if
these rules were simply modeled in the base programming language.

Adaptive Object-Models: With Application to Medical Observations 10/28/01

» User Interfacefor Defining Types

One of the main reasons to design an Adaptive Object-Model is to extend the system by defining new
types without programming. Sometimes the goal is to enable users to extend the system without
programmers. But even when only the developers will define new types, it is common to build a
specialized user interface for defining types. For example, the insurance framework at the Hartford
has a user interface for defining new kinds of insurance, including the rules for calculating their price.
Innoverse, a telephone hilling system, has a user interface for defining geographical regions,
monetary units, and billing rules for different geographical regions expressed in various monetary
units. The Argos school administration system lets has a user interface for defining new document
types and workflows.

Types are often stored in a centralized database. This means that when someone defines new types,
applications can use them without having to be recompiled. Often applications are able to use the
new types immediately, while other times they cache type information and must refresh their caches
before they will be able to use the new types.

The alternative to having a user interface for creating and editing type information is write programs
todoit. Infact, if programmers are the only ones creating type information then it is often easier to
let them do it by writing programs, since they can use their programming environment for this
purpose. However, the only way to get non-programmers to maintain the type information is give
them user interface that they can use.

Adaptive Object-Models are usually built from applying one or more of the above patterns in conjunction
with other design patterns such as Composite, Interpreter, and Builder. Composite [GOF95] is used for either
building dynamic tree structure types or rules. For example, if your entities need to be composed in a
dynamic tree like structure, the Composite pattern is applied. Builders and Interpreters are commonly used
for building the structures from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for building Adaptive Object-Models. Every Adaptive
Object-Model is a framework of a sort but there is currently no generic framework for building them. A
generic framework for building the TypeObjects, Properties, and their respective relationships could probably
be built, but these are fairly easy to define and the hard work is generally associated with rules described by
the business language. Thisissomething that is usualy very domain-specific and varies quite a bit.

Business rules in an object-oriented system are defined in terms classes, attributes, behaviors, and
relationships. AOMs provided an architecture style for defining these classes (TypeObjects), attributes
(Properties), behaviors (Strategies and RuleObjects), and relationships (Accountability) at runtime. These
systems can evolve to be a very powerful meta language for defining your business rules such as the form-
based workflow-system described by [Tilman99].

3. Implementation Issues

The primary implementation issues that need to be addressed when developing AOMs are how to
store the model in a database, how to present the domain-elements to the user, and, how to maintain the
model ?

Adaptive Object-Models expose metadata as regular objects; it means that the metamodel can be
stored in databases following well-known techniques. Object-Oriented databases are the easiest way to
manage object persistence. However, it is aso possible to manage the model persistence using a variety of
relational databases. In the example presented in this paper the Adaptive Object-Model was distributed

Adaptive Object-Models: With Application to Medical Observations 10/28/01

among a humber of different sites. Each site has its own database manager ranging from single user databases
to more powerful multi-users database managers.

It is aso possible to store the metadata using XML (Extensible Markup Language) or even XMl
(XML Metadata Interchange Format). Note that no matter how the metadata is stored, the system has to be
able to read from the storage and populate the Adaptive Object-Model with the correct configuration of
instances (Figure 4).

Application
. o Persistence _
- o Mechanism -
Y
Database y
Metadata Domain
Repository/Namespace Objects
N |
»- XML Parser Medata
Interpreter
XML/XMI

Figure4 - Storing and Retrieving M etadata

Figure 4 shows two possible solutions for storing a retrieving metadata. Developers can treat the
metadata as other domain-abjects, which are mapped to a relational schema. In that case the Persistence
Mechanism is responsible for storing and retrieving the metadata. Ancther possible solution is storing the
metadata as XML or XMI documents. If no Persistence Mechanism is present for semi-structured data,
developers have to build a Metadata Interpreter for populating the metamodel with appropriate objects. The
interpreter instantiates business model by plugging together the objects based upon the TypeObjects,
Properties, relationships between the Entities, Strategies, and the like. If more powerful business rules are
needed such as RuleObjects, a second level interpreter may be needed for runtime interpretation of the
business rules[Y oder2002].

The model is able to store all the metadata using a well-established mapping to relational databases,
but it was not straightforward for a developer or analyst to put this datainto the database. They would have to
learn how the objects were saved in the database as well as the proper semantics for describing the business
rules. A common solution to thisis to develop editors and programming tools to assist users with using these
black-box components [Roberts98]. This is part of the evolutionary process of Adaptive Object-Models as
they arein a sense, “Black-Box” frameworks, and as they mature, they need editors and other support tools to
aid in describing and maintaining the business rules.

4. Alternatives to Adaptive Object-Models and Related Work

There have been many techniques applied over the years for moving business rules out of the code,
making systems more adaptable to new requirements. The best-known aternatives or related techniques for
building these types of systems are Generative Programming, Metamodeling, Table-Driven systems, and
Business Rules research.

Generative Programming [Czarn2000] provides infrastructure for transforming descriptions of a system
into code. Descriptions are based on provided primitive structures or elements [Roy98]. Generative
Programming deals with awide range of possibilitiesincluding those from Aspect Oriented Programming and

Adaptive Object-Models: With Application to Medical Observations 10/28/01

Intentiona Programming. Although Generative Programming does not exclude AOMs, most of the
techniques deal with generating code from descriptions.

Code generators produce either executable-code or source-code. Generative Programming approach
focuses on the automatic generation of systems from high-level descriptions. In this context it is arguable
whether the high-level description acts like the meta-model of the generated system. It isrelated to Adaptive
Object-Model in that the functionality of systemsis not directly produced by programmers but specified using
domain-related constructs. There are also editors commonly built for describing the metadata for generating
code. These techniques are different from Adaptive Object-Models primarily because it decouples the meta-
model from the system itself. Adaptive Object-Models immediately reflect the changed business requirement
without any code generation or recompilation. Generative Programming techniques that provide these types
of reflection capabilities would be call Adaptive Object-Models.

M etamodeling techniques [MetaM 0l2000] include a variety of approaches most of which are generative
in nature. In general, these techniques focus on manipulating the model and meta-model behind a system as
well as supporting valid transformations between representations [Revault2000]. Quite often the attention is
more on the meta-model, or a model for generating a model, rather than the final application that will reflect
the business requirements.

They are related to Adaptive Object-Models in that they both have a “meta” model that is used for
describing (or reflect) the business domain, there are usually special GUI tools for manipulating the model,
and metadata is usualy interpreted for the creation of the actual model. The primary difference is that
Metamodeling techniques as provided by CASE tools generate the code from the descriptive information
[Rouvell2000] while Adaptive Object-Models interpret the descriptive information at run-time. Thus, if you
change your business information with a CASE tool, you will generate a new program, compile and release it
to your users. While in an Adaptive Object-Maodel, you change your business information, which is usualy
stored in a shared database that the running systems have access to. Then, once the information becomes
available, the system immediately reflects the new changes without having to release a new system.
[Riehle2001] describes a UML Virtual Machine that has an AOM to immediately reflect the changes in a
metamodel.

Table-Driven systems have been around since the early database days in the 1970’s. Quite often the
differences in the business rules can be parameterized [Perkins2000]. By storing these differences in a
database, the running system can either interpret these changes from a database table or the appropriate
function can be called with the differing values from the database. Sometimes these are built with triggers
and stored procedures.

A lot of recent work has been done towards looking at ways to represent business rules, specificaly
allowing for the rules to dynamicaly change. There was a workshop sponsored at OOPSLA 2000
[OOPSL2000], which focused on just this topic where many papers were presented describing both working
systems and research in this area.

5. Summary

Adaptive Object-Models provide an alternative to traditional object-oriented design. Traditional
object-oriented design generates classes for the different types of business entity and associate attributes and
methods with them. These are such that whenever a business change to the system is needed, a developer has
to change the code and release a new version of the application for the change to take affect. An Adaptive
Object-Model does not model these business entities as first class objects. Rather, they are modeled by a
description of structures, constraints and rules within the domain. The description is interpreted and
tranglated into the meta-model that drives the way the system behaves. Thus, whenever a business change is
needed, these descriptions can change and be immediately reflected in the running application. The most
important design patterns needed for implementing these types of dynamic systems are Type-Object,
Properties, Composite, and Strategy.

Adaptive Object-Models: With Application to Medical Observations 10/28/01

This architectural style can be very useful in systems; specifically systems that emphasizes flexibility
and those that need to be dynamically configurable. They are especially useful in describing business rules
that need to be changed at runtime.

6. References

[Arsanj9g]

[Arsanj9d]

[Arsanj2000]

[Arsanj2001]

[Czarn2000]

[Coad9?]

[Footedg]

[Fowler97]

[GOF95]

[GHV95]

[Hays96]

[Johnson9g]

[JO98]

[Manoles2000]

A. Arsanjani, . "Meta-Modeling and Grammar-oriented Object Design”, Comm. at OOPSLA
98 Workshop on Metadata and Active Object Models, October 1998.

A. Arsanjani. Anaysis, “Design, and Implementation of Distributed Java Business
Frameworks Using Domain Patterns’, Proceedings of Tools '99 (IEEE Computer Society
Press1999), pp. 490-500. http://www.computer.org/proceedings/tool /0278/02780490abs.htm.

A. Arsanjani. “Rule Object Pattern Language” . Proceedings of PLoP2000. Technical Report
#wucs-00-29, Dept. of Computer Science, Washington University Department of Computer
Science, October 2000. URL : http://jerry.cs.uiuc.edu/~plop/plop2k.

A. Arsanjani. Using Grammar-oriented Object Design to Seamlessly Map Business Models to
Component -based Software Architectures, Proceedings of The International Association of
Science and Technology for Development, 2001, Pittsburgh, PA.

Krzysztof Czarnecki & Ulrich W. Eisenecker. Generative Programming — Methods, Tools,
and Applications, 2000. Addison-Wesley, 2000.

Peter Coad, " Object-Oriented Patterns'. Communications of the ACM. 35(9):152-159,
September 1992.

B. Foote, J. Yoder. “Metadata and Active Object Models’. Proceedings of Plop98. Technical
Report #wucs-98-25, Dept. of Computer Science, Washington University Department of
Computer Science, October 1998. URL : http://jerry.cs.uiuc.edu/~plop/plop98.

M. Fowler. Analysis Patterns, Reusable Object Models. Addison-Wedley. 1997.

Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusabl e Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

Erich Gamma, Richard Helm, and John Vlissides, Design Patterns Applied, tutorial notes
from OOPSLA’ 95.

D. Hays. Data Model Patterns, Convention of Thought. Dorset House Publishing. 1996

R. Johnson, B. Wolf. “Type Object”. Pattern Languages of Program Design 3. Addisson
Wesley, 1998.

Ralph E. Johnson and Jeff Oakes, The User-Defined Product Framework, 1998.
URL: http://st.cs.uiuc.edu/pub/papers/frameworks/udp.

D. Manolescu. “Micro-Workflow: A Workflow Architecture Supporting Compositional
Object-Oriented Software Development”. PhD thesis, Computer Science Technical Report

Adaptive Object-Models: With Application to Medical Observations 10/28/01
UIUCDCS-R-2000-2186. University of Illinois at Urbana-Champaign, October 2000,
Urbana, lllinois.
[MetaM 0l2000] MetaM odeling and Model Engineering. URL.: http://www.metamodel .com.

[OOPSL2000] Ali Arsanjani and Joseph W. Y oder. Best—practices in Business Rule Design and
Implementation; OOPSLA, 2000. URL :
http://www.mum.edu/cs _dept/aarsanjani/oopsla2000/business-rules.htmil.

[Perkins2000] Business rules=smeta-data. Proceedings of 34th International Conference on Technology of
Object-Oriented Languages and Systems, 2000. On page(s): 285-294.

[Revault2000] N. Revault, X. Blanc & J-F. Perrot. "On Meta-Modeling Formalisms and Rule-Based Model
Transforms', Comm. at Ecoop'2K workshop lwme'00, Sophia Antipolis & Cannes, France,
June, 2000.

[Riehle2000] D. Riehle, M. Tilman, R. Johnson. “Dynamic Object Model”. Proceedings of PLoP2000.
Technical Report #wucs-00-29, Dept. of Computer Science, Washington University
Department of Computer Science, October 2000. URL : http://jerry.cs.uiuc.edu/~plop/plop2k.

[Riehle2001] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. “ The Architecture of a UML Virtua
Machine’. Proceedings of the 2001 Conference on Object-Oriented Program Systems,
Languages and Applications (OOPSLA ’'01), October 2001.

[Roberts9g] D. Roberts, R. Johnson. “Patterns for Evolving Frameworks’. Pattern Languages of
Program Design 3. Addisson Wesley, 1998.

[Rouvell2000] Rouvellou, I.; Degenaro, L.; Rasmus, K.; Ehnebuske, D.; McKeg, B. Extending business
objects with business rules. Proceedings on Technology of Object-Oriented Languages,
2000. On page(s): 238 — 249,

[Roy9g] Roy, G.G.; Kelso, J.; Standing, C. Towards avisua programming environment for software
development. Proceedings on Software Engineering: Education & Practice, 1998. Page(s):
381 —388.

[Tilman99] M. Tilman, M. Devos. “A Reflective and Repository Based Framework”. Implementing
Application Frameworks, Wiley, 1999. On page(s) 29-64.

[Yoder2002] J. Yoder, R. Johnson. “Implementing Business Rules with Adaptive Object-Models’.
Business Rules Approach. Prentice Hall. 2002.

10

