The Objectiva Architecture

Francis Andersorfiiancisa@altinet.ngtand Ralph Johnsoipinson@cs.uiuc.equ

g ugeTe 18 ox 1 o] o APPSR 2.
N0 2= 11T o PRSPPI 4
BIllING OVEIVIEBW ...ttt e ettt e e e e ettt e e e e e e aa e e e e e 6
A Framework for BUSINESS ODJECTSuuuuiiiiiiiiiiiiiee e eeeanes 9
The Objectiva Business Model DOMAINcoovuuuuiiiiiiiiiii e 10
(0] U] 011 YOS PUPPPPIPSPPI 12
OPEIratiONAl LEVELni et e e e e eaes 16
[T=T0 (o] o PSP PRSP 16
[0] £SO UPPPPPPIN 22
DAtA VAIUE.......eei et 25
NN o0 =P PPPPPTRUSPPPPIN 28
ENTEY CONTEXE .ottt e e e e et e e e e e naanas 32
KNOWIEAGE LEVEI 33
[1V 1Y/ 1= PP 33
ATITIDULE ..t e et e et 38
Entity and Data Major COMPONENTSuuiiiiiiiiiiiiii et eeeeees 42
CONLINUOUS DAEAceuiiii ettt e et e e e 45
B Yol 1= (N D | - PSP PPTRRUPPPPPIN 49
(O0] 0] 0] (<Y QD - | - F SO PPTTTPUPPPPPTTN 55
Discrete ColleCtion ALHDULEcooeiieii e 60
(2= 1= I8/ 01 PP 63
Framework DeVEIOPMENT.cooiiiii e eeeae 66
REIATIONSNIP ... et 67
USE A ..ttt ettt ettt ettt ettt e e e e e 70

05/07/98 1of 72

Introduction

Objectiva is a black-box framework for telecommunications billing. “Black-box
framework” means that it lets you build applications primarily by reusing existing classes
and does not force you to create new ones. “Telecommunications billing” means a
system that produces bills for a telephone company. Objectiva makes it possible to
quickly produce billing systems for all kinds of telecom services, including cellular, PCS,
local number portability, conventional local and long distance, and satellite services. It
also makes it possible to quickly customize an existing system to respond to changing
conditions and to provide new services. Itis a “convergent billing” system that makes it
possible for a single billing system to handle any kind of telecommunications service.

A billing system has many parts, some technical in nature, and some that solely
implement the business rules of billing. The purpose of the Objectiva architecture is to
organize the parts of the system as effectively as possible in order to maximize their
reuse. In Objectiva, as in Smalltalk, everything is an object, with all the jargon that one
expects in order to be fully object-oriented: inheritance, encapsulation, polymorphism,
responsibilities, collaboration, etc.

The Objectiva Architecture consists of ten domains:

* some are technical in nature (Hardware, System Software, Common Services,
Operations Model and the User Interface);

* some are oriented more towards behavior (Business Process and User Conceptual
Model);

* some are oriented more towards structure (Business Model and Domain Model
Engine);

* one is a set of tools (Development Services).

05/07/98 20f72

Revision Date: 5/3/98 Revised by: Francis Anderson Object Model: Objectiva Architecture Domains
" |Business Process
DevelopmentServices | . . |User Conceptual Model
OperationsModel
e Userlinterface
CommonServices BusinessModel
o A
Tl DomainModelEngine
] SystemSoftware
Hardware

Company Confidential

Objectiva Architecture |
Figure 1: Objectiva Architecture Domains

The Objectiva Architecture Domains are depicted in Figure las a UML Package
Diagram. In one sense, the domains can be thought of as the layers within Layered
Architecture [POSA], but this implies only one specific relationship (messaging) between
the domains. It is better to think of the dependencies as depicting how we build the
architecure, rather than just how the domains communicate. Once we have hardware and
system software, we build a domain model engine, from which we construct a business
model and common services to the system software. These common services are applied
to the different environments in the operations model, a special set of services being
required for the development environment. The business model requires an interface for
the various user roles and metaphors defined by the user conceptual model, which
implements the business process.

Although these domains area at a very high level of modeling, they have a direct
representation in the implementation of Objectiva. Figure 2 shows that the domains are
directly implemented aSNVY Configuration Maps. This is one of the goals of
Architecture: to provide configuration at a sufficiently high level that component-based
development becomes possible.

05/07/98 3of72

F 7 Configuration Maps Browser Mi=] E3

Mames Editions and “ersions Applications

EMvY/MWanager = - =
EMvY/Manager Attachments WY T4

EMWY Wanager Library Utilities WY 1.3

EMWY Swapper WY 1.2

OnsBusinesshiodel WA T2

OnsBusinessProcess WA T

OnsCommonServices WA

OnsDevelopmentEnvironment WA

OnsDevelopmentServices W10

OnsDomainklodelEngine 1.15

OnsDomainkiodelEnginellseCase 1.14

OnsSmalltalk\rapper 1.13

OnslseCase 1.12 |

OnsUserConceptualModel 1.1

DnsUserinterface 1.10

DEProfithtisualkdit 1.9

DEVisualkit 1.8 |
O5Win35a for Envy 3.01 16 d| [
Sigiﬂ?i;g;ﬁ;:rmn & VKPro Config. Expressions Required Maps

RolehodelCode *OnsSmalltalkWrapper %W 1.3 =
ST Broker *OnsDomainhiodelEngine 1.17

ST Broker COS Events *OnsBusinesshodel 1.6

ST Broker COS LifeCycle *OnsCommonServices 1.15

ST Broker COS Maming *OnsUserinterface 1.7

ST Broker Development [*OnsDevelopmentSerices 1.12

ST Braker Distribution «|| "OnsBusinessProcess 1.0 =

OT Demdeme 7 b men m i

Figure 2: Objectiva Domains &NVY Configuration Maps

To begin with, we will concentrate on the Business Model, and how it uses the Domain
Model Engine (DME) to express business rules. The DME is the most abstract of the
domains, and lies at the heart of the Objectiva Architecture.

Objectiva keeps track of a company’s customers. This includes their addresses and other
contact information, the agreements that each customer has with the Enterprise (which
can change frequently), the network events that cause a charge (like a local or long
distance call, a page, or an e-mail message), taxes, discounts, invoices sent, and payments
received. It manages equipment that is being rented or purchased, which means not only
charging for it, but keeping track of its location and managing an inventory of equipment
available for rental or purchase, and scheduling repairs on equipment that is broken.
Objectiva manages products, which are combinations of the various pricing plans that a
company is offering to customers. It connects to other systems for accounting, to get
network events, and to load subscriber information on the switch. Objectiva is a complex
information system, but it is made up of a fairly small number of highly reusable classes.
This is a key to its flexibility and power.

This paper describes the architecture of Objectiva, and assumes you know little about
telecommunications billing, but a lot about modern OO design, patterns, and Smalltalk.

Notation

05/07/98 4 of 72

Objectiva uses several hundred classes, and we’ll be looking at many of them. All the
classes added by Objectiva have a prefix of “Ons”, for Objectiva Name Space. Thus,
class names all look something like OnsNetworkAuthorization. It can get tedious to read

a document with names like that, and it seems unnecessary, since the names were chosen
to read well. So, class names are broken into their individual words, the “Ons” is

omitted, and a special font is chosen. Thus, the class named “OnsNetworkAuthorization”
will be written asNETWORK AUTHORIZATION. Smalltalk code will of course use the real
Smalltalk class names. This should make it easy for you to go from the document to the
code, but should keep the document easy to read.

05/07/98 5o0f 72

Billing Overview

Billing means both calculating charges for an individual event, and computing discounts
and taxes on the total. In both cases, the billing is event-driven:

* For an individual event, the trigger is externally generated through the subscriber’s
usage of the network, or on the completion of an order (e.g. installation charge).

» For the computation of monthly charges (e.g. subscription charge) discounts and
taxes, the events are internally generated through the cyclical closure of a period.
Agreement period closure, which triggers the calculation of monthly recurring
charges and discounts, and account period closure, which triggers the calculation of
taxes and preparation of an invoice, should be thought of as being independent
events. Frequently, however, the two events are combined, since this makes their
explanation through a paper invoice much simpler.

Billing is accomplished by rating an event (calculating the charges), and posting the
results (a posting with charges) to an account. The rating of network events is the most
computationally intense part of Objectiva because it is done for most transactions. Itis
common for a system to rate a million network transactions a day, and some rate
hundreds of millions. Cycle closure is the second most computationally intense part of
Objectiva. Together, these two activities account for more than 99% of the transactions
in a typical telecommunications billing system.

Rating can be complex, and there are many schemes (price plans) for rating. The charges
for a call can depend on the location of the caller and receiver, the agreements of the
caller and receiver (think of MCI’s “friends and family” program), and the time of day.

A cellular call can have airtime, roaming, long-distance, and landline charges. In

contrast, ship to satellite communications has a number of different terminal types, each

of which offers a different combination of voice, fax, telex, and e-mail service. The

rating of a call not only depends on the type of call, but also the type of equipment on
either end. Objectiva must handle all these rating schemes.

However, rating makes up only a small part of Objectiva. Most of Objectiva is involved
with representing more universal concepts like Business Party (Organization), Region,
Network, and Account. These are represented in the architecture as “business objects.”
Most of Objectiva is devoted to representing business objects, editing them, maintaining
relationships between them and constraints on their attributes, storing them in a database,
and keeping historical information on them. Because Objectiva supports these standard
functions so well, the rating algorithms are easy to change.

The first step in billing is to load information that rarely changes from outside sources.
Some of this information is about regions and networks, such as the fact that the 217 area
code is in lllinois and lllinois is in the United States. Some of this information describes
legal phone numbers or other “network authorization” numbers. In any case, this
information is provided partly by various international telecommunication organizations,

05/07/98 6 of 72

and partly by online maintenance. Nevertheless, it has to be loaded into an Objectiva-
based billing system.

The second step in billing is loading information about the service provider (the
Enterprise) such as the various price plans offered through customer agreements and the
rating rules for each price plan. This information is constantly changing. However, for
the sake of discussion, we will assume it is done before billing starts.

Once a billing system is set up, it performs six steps over and over. The steps can be
taking place simultaneously, but the results of one step affect the following steps.

1.

2.

o o

Edit service order. Setup a new customer, or change the agreement with the
customer.

Rate CDR Batch. Calls and other network events that affect billing are grouped
into batches ofALL DETAIL RECORDS Processing these events consists of making
NETWORK EVENT objects from the externally supplied data, rating these events, and
then charging them to the appropriate account.

Agreement period closure. Some transactions (such as monthly fees for equipment
charge, and the calculation of discounts) occur periodically based on the
customer’s agreement. Periodically these transactions must be created and
charged to the customer’s account.

Account period closure. Generate taxes and any other charges that depend on the
total invoice, and produce the invoice for a customer. Sometimes Objectiva prints
the invoices directly, sometimes it hands them off to a legacy system that prints
them.

Payment. Receive payment.

Adjustment. Change old billing information and make all adjustments.

05/07/98 7of 72

Revision Date: 2/27/98 Revised by: Francis Anderson | Decomposition: Business System
Obijectiva
Billing
System
]
[I [[I I]
; ; Product Product Revenue Accounting
adminaanon | |~ mees | | pefmtion Sales Delivery | | Management
“infrastructure” “reality” “perception” | |‘ODtaining the} “servicing the | “charging the “the. bottom
Enterprise Equipment Product Lead & Customer Event Credit
Profile Definition Definition Prospect Profile & Collection Management
Management Management Contact
Service Price Plan Management Charge Accounts
Role Definition Definition Definition Sales Support Generation Receivable
Order
Employee Equipment Posting Rule Commissions Management Charge Adjustment
Management Inventory Definition Posting Processing
Service
Application Authorization Invoice Provisioning Cycle Payment
Security Inventory Definition Closure Handling
Trouble
Workflow Network Tax Plan Reporting Invoice Collections
Administration Provisioning Definition Production
Accounts
Region Event Audit & Payable &
Management Definition Controls Settlements
Third Party
Profile
Objectiva Architecture | Company Confidential

Figure 3: Business Process Domain

The Business Process Domain (Figure 3) shows the decomposition of Objectiva into
business systems and subsystems. It depicts the functionality and requirements of the
system with which business people are comfortable, and it is the result of a significant
amount of business analysis.

This analysis is necessary for the development of a successful business system, but it is
not a technical activity. The Business Process domain is the responsibility of the
business, and standard Business Process Reengineering (BPR) and quality improvement
techniques should be applied to its optimization. Only if the business defines the critical
process and product indicators within the Business Process domain, can the Business
Model provide the required feedback to keep the overall system operating at peak
efficiency and effectiveness.

In short, billing consists of processing transactions and generating invoices. Billing is
difficult because the kinds of transactions and the rules for processing them are
constantly changing, and are different for every company. The key to Objectiva is hard-
coding the part of billing that does not change and making the part that does change very
flexible so that it can be tuned to the Business Process that a particular Enterprise needs
to be most competitive.

05/07/98 8 of 72

A Framework for Business Objects

Billing requires lots of information. For example, taxes depend on the location of the
customer. There might be city taxes, state taxes, and federal taxes. The cost of a call
also depends on where the call originated. Therefore, the system must know the location
of both the call and the customer. The charge to a customer depends not only on the
transaction, but also on the agreement that the customer makes with the Phone Company.
Thus, modeling the information needed to rate a phone call takes a lot of objects.

The high-level structure of these objects is always the same, but the details are always
different. For example, rating a network event (e.g.. phone call) involves the following:

1) finding the network authorization for the event (e.g.. the phone number of caller),

2) finding the price plan for the network authorization,

3) creating a posting for the event,

4) iterating over each part of the price plan and finding out how much it will add to
the charge for the event,

5) adding these charges to the posting,

6) applying the posting to the billing account.

But different kinds of telecommunication services have different kinds of network
events, network authorizations, price plans, and charges.

Even the simplest objects can vary. For example, you might think that a phone number
is a phone number, and wonder why Objectiva uses a fancy name like “network
authorization” for something that seems pretty simple. But a phone number is just a
special case of a network authorization. In general, a network authorization states the
right by which a call was able to use the network. It is usually either the originating or
terminating party in a call. From the network authorization, we can determine the billing
authorization which keeps track of the pricing plan used for rating the call, knows who
gets the invoice, the features they are willing to pay for, and dates that it is effective.
Some of this information is part of the core billing functions, but other information is

not. The core is unlikely to vary while the rest varies a lot. For example, a regular
phone line might support call forwarding and might allow certain kinds of incoming or
outgoing calls to be barred. Satellite service does not support these features, but supports
noise muting. None of these are used directly by rating algorithms, though they might be
used to choose a billing plan or to “provision” the switch.

05/07/98 9 of 72

The Objectiva Business Model Domain

As shown in Figure 1, the Business Model depends on the DME. This is due to the fact
that the DME is used to store those business rules that can be expressed as knowledge
level instances. This is the crux of the notion of a black box framework — to increase
functionality by adding instances of objects, rather than lines of code.

Revision Date: | 2/16/98 | Revised by: | Francis Anderson | Object Model: | Business Model Major Com ponents
Service
1

Network

Inventory Product
Sy K-
Ledger

Enterprise

Country Currency

Objectiva Architecture |

Figure 4: Business Objects

The Business Objects (Figure 4) are the major components of the Business Model
required for Telecom Billing. Each of the Business Objects is implementedEé\van
Application (e.g.CounTRrY APP); the dependencies between the Business Object packages
are implemented @&NVY prerequisites.

05/07/98 10 of 72

ﬁEnlit}' Editor [Relationship: Children]
Architecture
I Objectiva Architecture Yiew Relationzhips
— Tree Wiew
MNarne Type =
EH iOhbjectiva Architecture Architecture
~H Business Model Domain
- Country Major Component
- Currency Major Component
- Enterprise Major Component
= Imventary Major Component
- Ledger Major Component
- Metwork Major Component
- Product Major Component
- Sarvice Major Component
- Business Process Darmain
- Commaon Services Darmain
~BE Developrment Services Domain
~B Domain Model Engine Domain
- Hardware Darmain a
-~ Operations Model Domain
- System Software Domain hd

Figure 5: Objectiva Architecture Entity Editor

The Objectiva Architecture Entity Editor (Figure 5) shows the decomposition of the

architecture into domains, and the Business Model Domain into its Major Components
(Business Objects). We will be using this outline view in the Entity Editor to look at a

number of different types of entity within Objectiva.

F - Configuration Maps Browszer

Marnes

EnNY hianager -
ErVY Wanager Attachments

EMYY Manager Library Utilities

EMYY /Swapper

OnsBusine odel
OnsBusinessProcess
OnsCommaonServices
OnsDevelopmentEnvironment
OnsDevelopmentSemvices
OnsDomainModelEngine
OnsDomainhkiodelEnginellseCase
OnsSmalltalkvyrapper
DnsUseCase
OnsUserConceptualiodel
Onslserinterface
DSProfithvisualkit

Editions and Yersions

Applications

O = k2 L) =M

1.
1.
1.
1.
1.
1.

*OnsCountryApp 1.4
*OnsCurrencybpp 1.5
*OnsEnterprisebpp 1.3
*OnsLedgerdpp 1.1
*OnsMetworkApp 1.2
*OnsProductfpp 1.1
*OnsServicedpp 1.1

Config. Expressions

Required Maps

B

Enter a description far the canfiguration map

=

Manager: Library Supervisor

Figure 6: Business Mod&NVY Configuration Map

The Business Mod&NVY Configuration Map (Figure 6) shows each business object
implemented as aBNVY Application.

05/07/98

11 of 72

Country

The first business object to describe is Country, and we will be using it as the example to
describe how Objectiva’s Domain Model Engine (DME) implements the Active Object
Model pattern by building on the Entity major component of the DME.

Revision Date: | 3/6/98 | Revised by: | Francis Anderson | Object Model: | Country Minor Components

—

Address

—

Region

Objectiva Architecture |
Figure 7: Country Minor Components

The Country Minor Components (Figure 7) are Region and Address, but if Country has
these Minor Components, why were they not depicted in the Objectiva Architecture
Entity Editor (Figure 5)? A Minor Component is implemented asNYY

subapplication (e.qReGION SuB APP) within the Major Component applicatioGQUNTRY

APP). This association relationship can be derived by naming within the Smalltalk
image, and is displayable via the Relationships button on the Entity Editor.

05/07/98 12 of 72

EEntit}l Editor [Relationzship: Children]

Architecture

I Objectiva Architecture Yiew Felationzhips

T ™| Available relationships Ed I_

Select the relationship to view.

— Tree Wiew

Marme
B Chjectiva Architecture

- Business hodel
“mumi Children =
- Currency Configuration Components
- Enterprise Events
"~ Inventory Application Sub Apps
h?a?ﬁxeurrk Prerequisite Compaonents
- Product Dependent Cormponents
- Demvice
- Business Process
-~ Cormmon Senices
~B Development Servic
-~ Domain haodel Eng
- Hardware
~B Operations Maodel
~B System Software =i
- | l=zar Moncentoal b —

Figure 8: Major Component Relationships

Having selected the Configuration Components relationship (Figure 8), the Entity Editor
is redisplayed, but instead of viewing the architectural composition, the configuration
composition (physical ENVY structure) is displayed (Figure 9).

EEntil}l Editor [Relationship: Configuration Components]
4 ajor Component

I Counkry Wiew Belationzhips
— Tree Yiew
Narre Type =
HiCountry Major Component

~H OnsCountryApp Erwvy Application

- Bl OnsAddressSubApp

Envy SubApplication

- OnsAddress Clags Context
B OnsRegionSubApp Envy Subipplication
= Ons Country Class Context
= QnsRegion Clags Context =

Figure 9: Country Major Component Configuration Components

05/07/98

13 of 72

F " Application Manager for: Library Supervisor [_ (O] x|
Default: OnsModelSubApp Defined and Extended Classes Prerequisites

OnsActionSequencedpp 1.1, =|[OnsCountrydpp Initial || OnsEventApp -
OnsArchitectureApp 1.7
OnsBusinesshiodelCommonSernicesApg
OnsBusinesshiodelDeveloprmentServices
OnsBusinessProcessApp 1.1, I
OnsBusinessProcessCommonServicess, =
OnsBusinessProcessDevelopmentServic Dependents
OnsCommonzenicesCommon3enicesA
OnsCommonServicesDevelopmentServic

OnsEnterprisefpp -

OnsCountrydpp 1.4
OnsAddressSubApp 1.1
OnsRegionSubbpp 1.4

OnsCurrencyfpp 1.5 =

OnsDataspp 1.16... —

OnsDatallserinterfacespp 1.2, . Group Members
OnsDevelopmentSericesCommaonSeric =Library Supervisor
OnsDevelopmentSenicesDevelopmentSe
OnsDomainApp 1.14..
OnsDomainkfodelEngineCommonService
OnzDomaintktodelEngineDevelopmentSel
OnsEnterprisebpp 1.3, hd - -

Figure 10: CountrfENVY Application

The Country ENVY Application (Figure 10) shows the dependencies from the UML
Package Diagram implementedEaSVY prerequisites. Since Event is a component of

the DME, shows that the Business Model depends on the DME. This information is also
available from the Entity Editor by selecting the Prerequisite Components (Figure 11) or
Dependent Components (Figure 12) from the Major Components Relationships (Figure
8).

EEntit}l Editor [Relationship: Prerequizite Components])
4 ajor Component
I Country Yiew Felationships
~ Tree Yiew
Mame Type =
B iCountry hiajor Cormponent
B Event Major Component
B Entity Major Component
- Data Major Component
“ B Domain Major Component
~ Srralltalk Major Component

Figure 11: Country Prerequisite Components

05/07/98 14 of 72

EEntil}l Editor [Relationship: Dependent Components]
4 ajor Component
I Counkry Wiew Belationzhips
— Tree Wiew
MNarre Type =
= Country Major Component
EiEnterprise Major Component
- Ledger Major Cormponent
=B Irventory Major Component
= B Metwork Major Component
: - Service Major Component
=B Product Major Component
- Service Major Component

Figure 12: Country Dependent Components

In the naming of the Objectiva business objects, we have emphasized aggregation, as
opposed to generalization: thus, Country, even though it is a kind of region, is chosen as
the name of the business object, since it is the “big” region. When using the divide and
conquer approach, one must decide where to place each component; Objectiva groups
components together as much as possible because they are part of a larger component,
rather than because they are the same kind of thing as a more general component. We
feel that this encourages more stable and cohesive architecture, which is not dependent
on the much more arbitrary design decision of inheritance.

05/07/98 15 of 72

Operational Level

To support a telecommunications billing application, Objectiva must know about a

number of different kinds of region. The kinds of region that are supported depend on

the Country in which Objectiva is deployed. The countries are the roots of the forest of
regions. In the Operational Level, we concentrate on how the various regions (United
States, Texas, Area Code ‘972’, etc.) are represented; the Knowledge level describes how
the rules governing the types of Region are expressed.

Region

The Country Minor Components (Figure 7) shows us that the primary component of the
Country business object is Region. Having first applied aggregation to the naming of the
business objects (Country, Currency, Enterprise, etc.), we now apply generalization to
the naming of the minor components within them (Region, Address, Posting Rule,
Business Party, etc.).

The first order of business within most object-oriented applications is to gain a handle on
a node within a graph of objects, which can then be navigated by following pointers.
This involves the execution of a query, for which Objective provides a “Finder”

interface.

T "jRegion Finder _ O] =]
— Conditions
[Name [+ [match [+]]
Chene]
Reqgion =] &dd Find
Abbreviati =
Ch rew; IDnd — Hemove Eemayeds
: arge B an :
S hawir :I 5 |
;| Maltem Addiess Formats i [
— Results Currency
Marre | Type Origin RE

Edlifi.. Evecute Brocedure Done

Figure 13: Region Finder

The Region Finder (Figure 13) enables us to compose a query for a Region, based on the
type of region that we are looking for, or any of the attributes of a Region.

05/07/98 16 of 72

Eﬂegiun Finder M=l E3
~ Conditions
||:|r ILI |Name I;I |mat|:h ILI |
With: Mame match ® (= &dd Eind |
= Hemave Remowve Al
Showing:| 1 -25 o 111 R e
— Fesults
Marme Twpe | Crigin | I;
207477 Central Office Code 207
97254 Central Office Code 972
972618 Central Office Code 972
Canada Country MAA
United States Country AR
Collin County Texas
Dallas County Texas
Tarrant County Texas
9595995 Durrmy Central Office Code 999
999 Durrimy Mumbering Plan Area Dummy
120 LATA Mynex
122 LATA, My rnes
124 LATA, Mynex
126 LATA, Mynex
220 LATA Bell Atlantic
320 LATA Ameritech
a52 LATA southwestern Bell Corporation
B20 LATA US West
a0 LATA, Cff Shore And International
g2 LATA Off shore And International
832 LATA Off Shore And Intermational
841 LATA Off Share And International
920 LATA, Independents
Ameritech LATA Region United States
Bell Atlantic LATA Region United States

Figure 14: Results of Wild Card Search on Region Name
The Results of Wild Card Search on Region Name (Figure 14) shows the regions

populated in Objectiva for testing purposes sorted by type and name. The origin displays
the “parent” of the region. As countries, Canada and the United States have no parent.

05/07/98 17 of 72

ﬁ Region Finder M=l E3

— Conditionz
I Reqion ILI I

[=] [Country [~

Courtry

I Coavinky
Ly Mumbernng Flan Area
LATA,
| E Region
~ Resultz NP Location
Marre Type I Mumbering Plan Area

Showing: | Mo ltems 4 Ereyins

Provinze
R ate Center
State

=i Everute Procedine Daone

Figure 15: Region Types

In most cases when doing a search, the type of region will be known, and we will select a
region to edit

EEnlil}l Editor [Relationship: Children)
Country
I Linited States iew Relationships |
- Tree Wiew
Marre |Type I‘
B United States Country
~B Ameritech LATA, Region
- B Bell Atlantic LATA, Region
- Bell South LATA Region
~B Independents LATA Region
~ B Mynex LATA, Region
~@ Off Shore And Intermational LATA Region
- Pacific Telesis LATA, Region
~B Southwestern Bell Corporati LATA Region
- US West LATA Region
~E Dummy MNPA Location
- Interrtl Inbound MPA Location
- Personal Com Senice MNPA Location
- Reserved MNPA Location
- Semice Access Code MPA Location
- Special Accounting MPA Location
~B Toll Free Service MPA Location
= || 5 Sawarnmant KIP& | nratinn LI
- Datavalues
Abbreviation: I 154, =
Charge Band: I i] I_;I
Address Formats: I OrderedCallection [address->uSStreetiddiess address-»uSPostOfficeBox] Edit... |
Currency: I US Daollar l;l
Tax Price Plat: I Test Federal T ax Price Plan l;l

Figure 16: The United States Entity Editor
05/07/98 18 of 72

The United States Entity Editor (Figure 16) shows those attributes required by a Country,
but other Region types may only require abbreviation and / or tax price plan. Note that
the attributes have different data types, which we will discuss in detail later:

» abbreviation is a data entry string;

» charge band is selected from a list of available strings;

» address formats is a collection selected from a list of available objects;
* currency and tax price plan are selected from a list of available objects.

ﬁEnlit}' Editor [Relationship: Children]
State
I Texas Wiew Relationships
— Tree Wiew
Narme Type =
EHilexas State
= Collin County
- Dallas County
- Tarrant County
- 214 Murrbeting Plan Area
- 817 Murnbeting Plan Area
- 572 Mumbering Plan Area
- 972541 Central Office Code
= 72618 Central Office Code -
— Data Values
Abbrewviation: I T =
Tax Price Plan: I Test State T ax Price Plan l;l

Figure 17: Texas

ﬁEnlit}' Editor [Relationship: Children]
LATA Region
I Souttwwestern Bell Carporation iew Felationships
— Tree View
Matne Type =
HSouthwestern Bell Carparation LATA Region
- 552 LATA,
= E Irving Fate Center
“ B Plano Rate Center
- 072618 Central Office Code

Figure 18: Southwestern Bell LATA Region

The Texas and Southwestern Bell LATA Region Entity Editors (Figures 17 and 18) show
the sharing of a Central Office Code (972618) by a Numbering Plan Area (972), which is

05/07/98 19 of 72

composed of Central Office Codes, and a Rate Center (Plano), which inClewteal
Office Codes. Composition and inclusion are two different forms of aggregation, which
we will discuss later.

Revision Date: | 2/27/98 | Revised by: | Francis Anderson Object Model: Region Object Model

Entity
(Entity)

Region

createSubRegionNamed:ofType:

Country

Objectiva Architecture
Figure 19: Region Object Model

E OnsRegionSubfApp 1.4 Browser

Object

fodel

Onshiodel
OnsYalue
OnsEntity
OnsRegion
OnsCountry

subApplication

OnsRegionSubApp

Figure 20: Regio®ENVY Subapplication

The Region Object Model (Figure 19) is implemented by the Region subapplication in
ENVY(Figure 20). The reuse of the Entity framework all®&sion to consist of only

18 instance lines of code (LOC), a@dunTRryY of only 7 class LOC. Of course, this is

only in the Business Model domain, the Entity major component of the DME consists of
1,436 instance LOC, and 141 class LOC, andetery EDITOR in the User Interface

domain consists of 84 instance LOC, and 74 class LOC. The test Country domain data in
the Development Services domain consists of 102 class LOC to populate the knowledge

05/07/98 20 of 72

level, and 145 class LOC to populate the test data in the operational level. Each of these
is built upon previously built frameworks, of course, but the point is that only 25
additional LOC are required to implement the base Region functionality.

Other applications (e.g. Dispatching) will place additional requirements on Region such
as handling polygons of coordinates. These applications will add classes, structure and
behavior to the Region object model, but as has been demonstrated, a significant amount
of structural support is obtained by being a subclagsiofy. We will now look at how

this is achieved.

05/07/98 21 of 72

Entity

Most of the important operational level classes in Objectiva are subclaga¢sI oY,

which is part of the DME. The Region examples alstad to demonstrate some of the
power of the Entity framework. As we progress through the descriptions of the business
objects, we will be further detailing the capabilities of the DME.

From the United States Entity Editor (Figure 16), we see that an entity has a name
(‘United States’). From the Tree View section of the editor, we see that an entity has a
type (Country), and that it is related to other entities of various types (LATA Region,
NPA Location and State). Finally, from the Data Values section of the editor, we see
that an entity is described by assigning values (‘USA’) to attributes (Abbreviation).

Somewhat surprisingly, the only piece of information the entity holds on to for itself, is
its name. It delegates the responsibility for holding on to the rest of the information to its
context, and the rules governing it to its entity type.

OreCauntey OnsEntity Cantesd djqusﬂcéntfn}ifmbieé li‘lﬁSJCd:'nCEH |
dgpendents dependents dependents dependents
hltMask/ bithask bithask bithask

context patept selector selector
(T subjec attributes attributes
attributeDictionary children rootEntity Type rootEntityType
¥ pseudoParents pricePlans priceFlans
United States' creationBEvent entityClass entityClass

County < dataalues relationship relationships
#agion string'y/alues subEntity Fypes subEntityTypes
A valueTypes concept
entityType name
changelog description
Bvents keyStrategy
history

Figure 21: Instance Diagram of the ‘United States’

The Instance Diagram of the United States (Figure 21) shows most of the structure is in
ENTITY CONTEXT andROOT ENTITY TYPE, with little falling intoENTITY itself. Also, note

the nested application of the TypeObject pattern betweem ENTITY TYPE and

CoNCEPT. ‘United States’ ENTITY) is an instance of type CountigNTITY TYPE); Country
(ENTITY TYPE) is a subtype of RegiortONCEPT). We will cover this later when

describing the Knowledge Level.

The attributeDictionary variable is a temporary measure to enable an image-based query
mechanism, particularly for architecture metrics, and it raises the design question of
when to use an instance variablé&ENTITY or a data value iBNTITY CONTEXT. As a

05/07/98 22 of 72

general rule, association relationships and queryable continuous data values (e.g. name)
should be stored in instance variables.

Revision Date: | 3/28/98 | Revised by: | Francis Anderson | Object Model: Entity Object Model
Value DataValuesHolder
(Type) (DataValue)
Entity 1 subject 1 context EntityContext EntityType
name (EntityType)
{node}
{type}
{valuesHolder}

Objectiva Architecture |

Company Confidential

Figure 22: Entity Object Model

From the Entity Object Model (Figure 22), we see natTy andeENTITY TYPE play the
expected roles in the Type Object pattern. In this case, the classification relationship has
been reified agNTITY CONTEXT, Which is a subclass @faTA VALUESHOLDER. An

entity’s context holds on to its type, its data values, and its parent / child (aggregation)
relationships.ENTITY CONTEXT also tracks the changes to these values over time, through
three different historical mechanisms: a change log, an event collection, and a collection
of historical editions of itself. We will be describing these historical capabilities later,

but they are mentioned now because it is the context’s responsibility for tracking the
history of its subject entity that determines its implementation via delegation rather than

inheritance.

05/07/98

23 of 72

OnsEntitySubApp 1.14 Browser

Object
hodel
Onshiodel
OnzMode
OnsData%aluesHolder
OnsEntityContext
OnsSelectorPolicy
OnsEntitySelectarPolicy
OnsYalue
OnsEntity
SubApplication
OnsEntitySubApp

Figure 23: Entity ENVY Subapplication

The Entity Object Model (Figure 22) shows that the only variable addedyy

CONTEXT is entityType; actually, it also adds changelLog, events, and history, but we will
cover these later. So, let us look at howriEy CONTEXT stores its dataValues, which it
inherits fromDATA VALUES HOLDER in the Data Value minor component.

05/07/98 24 of 72

Data Value

Instead of representing the properties oEaNTY as instance variables, BRTITY

ConTEXT holds them in a collection named dataValues. This is a very flexible solution,
in that a property may be added toEnTiTY with no change required to either code or
the physical schema.

ﬁ O nsEntityContext [_ O]

self | OrderedCallection | ki
dependents Abbreviation: USA —
parent Charge Band: [

SU_}JJECt Address Farmats: OrderedCollection

children (address-=usStreetAddress

pseudoParents

creationEvent address->uSPostOfficeBox)

data“alues Currency: LS Dollar
stringValues Tax Price Plan: Test Federal Tax Price Plan),
valueTypes

entity Type
changelog
events
history

+* +

Figure 24: Inspector View of United States Data Values

S S — OnsEntityContext OnsContinuuusD4ta\r’a}ue OnsAttribute
OnsCauntry - - dfependents dependents dependents
dfapendents bithask bithdask hithask
hithlask < Parb?“t | context »celector
caontext | subject I S . I B Satian'
children OrderedCaollection value [>USA name - Abbreviation
hame rsting Iy valueDomain
attributeDictipnary pseudoParents retneex rhaxSize
% creationEvent lastindex entity Type
‘United- States’ datavalues »1
. 5 dataType
stringalues N defaultDatavalue
valgeTypes 4 derivationStrategy
entityType . isRequiredFlag
;::’:tgsemg changelLogFlag
history ¥
OnsComplexData®/alue OnstomplexData/alue
dependents dependents
bithask bithask
context L, Currency’ context —————————*Charge Band'
value —————————— S Dallar | - [72108 >0
¥
OnsComplexDatat/alue OnsDiscreteCollectionDatalalue
dependents dependents
bithdask hithdask
context —————| = Tax Price Plan’ contekt - Address Formats'
valug ————*Test Federal Tax Price Plan' |value *S Post Office Box!'
T T—hUS Street Address’

Figure 25: Instance Diagram of Data Values
05/07/98 25 of 72

Revision Date: 3/5/98 Revised by: Francis Anderson Object Model: Data Value Object Model

Node Value
(Model) (Type)
DataValuesHolder * DataValue 1 context DataType
(DataType)
get: dataType
setito:
accumulate:
1 value
Object
DataValuesHolder has two additional instange

variables for schema storage transformation
purposes. Some dataValues are "flattened" into
stringValues and valueTypes to avoid the storage
overhead of an additional complex object.

Objectiva Architecture |
Figure 26: Data Value Object Model

The Data Value Object Model (Figure 26) shows lmwa VALUES HOLDER has an
aggregation of manRATA VALUE, which places a valueBJECTIn the context of @ATA

Type. All these classes are abstract. This, of course, is a second example of the Type
(DATA TYPE) Object DATA VALUE) pattern, and Fowler’'s Operational and Knowledge
levels. For now, we will concentrate on the operational Iexeh VALUES HOLDER and

DATA VALUE. We will discuss the relationship DATA TYpPE later.

E OnsData¥alueSubApp 1.0 Browszer

Object
hodel
Onshiodel
CinshMode
OnsDatavaluesHaolder
Cns'alue
OnsDataalue
subApplication
OnsDatavalueSubipp

Figure 27: Data ValuENVY Subapplication

In the case of @oNTINUOUSDATA VALUE (United States Abbreviation ‘USA’), we are
dealing with a String value (‘USA") in the context of anrrIBUTE (Abbreviatior) of an
ENTITY TYPE (Country). As a general rule, we do not wish to store continuous values as

05/07/98 26 of 72

persistent objects, since they cannot be shared, and, as simple values, only have meaning
within the context of on®ATA VALUES HOLDER. Objectiva provides the schema Major
Component in the Common Services domain, which performs storage transformation on
objects prior to making them persistent. Prior to invoking storage transformation, objects
are told to “flatten” themselves.

OnsEniityContext — Artdy _ OndAtiriufe |1
dependents 1= dependents
bithask 2 bithask

parent 3 selector

subject 4 narna »Abbreviation'
children 5 valuellomain
pseudoParents //W maxSize
creatinnEverV entityType
datavalues dataType
stringalues ———»LI5A defauliDatavalue
valueTypes : derivation3trategy
entity Type isReguiradFlag
changelaog changelagFlag
events

history

Figure 28: Instance Diagram of Flattened Continuous Data Value

The Instance Diagram of the Flattened Continuous Data Value (Figure 28) shows how an
entity context flattens its continuous data values by storing the value in the stringValues
collection, and replacing the continuous data value with the attribute in the dataValues
collection. The dataValues OrderedCollection is replaced by an Array and the
stringValues StringCollection is replaced by a carriage return delimited String.

In this section, we have described hemrTy usesENTITY CONTEXT to store the values
of simpleDATA TYPES (ATTRIBUTES), a capabilityeNTITY CONTEXT inherits fromDATA
VALUES HOLDER. Next we will describe how relationships to otksmiTys are also
stored iNENTITY CONTEXT, a capability it inherits fronNODE.

05/07/98 27 of 72

Node

When we look at the United States Entity Editor (Figure 16), we see that the screen is
divided into two halves: “Tree View” and “Data Values”. The data values describe the
entity; the tree views define its relationship to other entities. The United States consists
of states (e.g. Texas), which consist of counties (e.g. Collin, Dallas, and Tarrant) and
Numbering Plan Areas (e.g. ‘972’), which consist of Central Office Codes (e.qg.
‘972628"). Texas (Figure 29) becomes a node in a tree, or graph, of regions.

'EirJSEnt'itytLhtEM United States'

dependents b}qisEledD}ﬂmh Tehias'

hitiask dependents
parent bittask Collin
subject * | Dallas'
_ parent ’/,..
children subject Tatrant'
pseudoMarents children I I
: TP OndErtithChntebd | 972
creationEvent pseuddParents *EF- H: ﬂP‘I/
datavalues : dependents
_ craatiohEvent bithsk
stringalues datafalues pareht fﬁ]nsﬁnht}iddnté}it BT
valueTypes stringijalues . dependerits
entityType subject
yl¥p walueTypes . Hithdd sk
changeLog g children
Svants e:htj,r FLF]E pseudoParents pargnt
history C1angeeg creationbyent S"'_E'JE':t
ew-urents datatalues children
histary stringi/afua nseudoParents
valueTypes creationEvent
entity Type data%alues
charigeLbg string%alues
events valueTypes
histary entityType
changelog
events
histary

Figure 29: Instance Diagram of Region Contexts

DATA VALUES HOLDER inherits this capability fronNopg, which provides a generalized
implementation for the values of relationships, similar to the manner in which data value
provides a generalized implementation of the values of attributes. Node is an extension
of the Composite pattern [Gamma 95], except that a black-box framework approach is
taken, implemented by delegation, rather than a white-box approach, implemented by
inheritance.

05/07/98 28 of 72

A graph of nodes may be a tree or a directed acyclic graph (DAG), depending on the
number of parents that a child is allowed. It is very hard to think of an entity that is not
part of at least one tree. In Objectiva, an entity delegates the responsibility for keeping
track of its position in multiple trees to its context.

A node keeps track of its links to other nodes in a graph with the instance variables
children, parent, and pseudoParents:

» children may be empty, in which case the entity is a leaf; or children may have
members, in which case the entity is a composite. The United States Entity Editor
(Figures 13 and 14) shows some of the children of the United States (Alabama,
Arkansas, etc.).

* parent may be nil, in which case the entity is the root of a tree and provides overall
context; for example, countries are the root regions, so the parent of the United States
is nil.

* pseudoParents is used to represent a DAG structure, in addition to a tree structure.
This handles the situation depicted in Figures 11 and 12, where the central office
code (COC) ‘972618’ is part of both the numbering plan area (NPA) ‘972’ and the
rate center ‘Plano’.

OnsRegion’ ﬂonsEntityCuntext OrdefedCallection
dependents dependerts /ﬂrstlndex
hitMask/ bithask lastindex
context parent 1
narme subject 2
attributeDictionary children 3
i pseudoFarents 4
creationEvent 5
o7z it otk
:] , |datavalues OnsEntityContes)
Mumbering Plan Area stringvalues dependents
T valueTypes bithask
entity 1 ype parent |
changelog - subject —*972618"
events children ‘Central Office Code’
histary pseudaParents

creationEvent
datatalues
stringalues
walueTypes

entityType
changelog
events

histary

Figure 30: Instance Diagram of a Composition Relationship

The Instance Diagram of a Composition Relationship (Figure 30) shows the
implementation of the relationship between NPA ‘972" and COC ‘972618’. This

05/07/98 29 of 72

relationship is a composition, and a strong form of composition at that, since ‘972’ is
propagated from the NPA into the name of the COC. Only an NPA can create a COC,; if
an NPA is deleted, all its COC children must be deleted too; a COC can only be part of
one NPA.

Thus, since a child may only be part of one composition, the back pointer from the COC
context to the NPA context is stored in the parent variable.

‘Rate Center’

T

data‘alues
stringvalues

™

dataalues
stringalues

CinsRegion: « - ;ﬁélﬁsénfityduheﬂt! ‘br?:ieql‘ead:ﬁtlhéﬂit;f{ !Ons:E'n.Iit}idd:nttiz}it_
dependents dependents firstindex dependents
hiTMESk/ bithdask lastindex bithask
context parent 1 parent
name subject 2 subject
aﬂrihuLDictinnary children 3 children l
l pseudoParents 4 pseudoParents 972618
Plana’ creationBEvent 5 creationEvent Central Office Code’

valueTypes valueTypes
entityType | entityType
changelLog changelog
evants events
history histary

F

OrderedCollection -

firstindesx
lastindex
91
2

3
4
5

Figure 31: Instance Diagram of an Inclusion Relationship

The Instance Diagram of an Inclusion Relationship (Figure 31) shows the
implementation of the relationship between Rate Center ‘Plano’ and COC ‘972618’,
which is a weaker form of aggregation that Objectiva calls inclusion. Before becoming
part of a rate center, a COC must already have been created by an NPA, and the back
pointer from the COC to the rate center is stored as a member in the pseudoParents
variable, thus allowing an entity to be a member of multiple inclusions.

NopE is defined in the root component of the Objectiva Architecture — the Model minor
component of the Domain major component of the Domain Model Engine domain. We
will not be discussingrRoPOSITIONAaNdERROR yet.

05/07/98 30 of 72

Revision Date: 4/15/98 Revised by: Francis Anderson Object Model: Model Object Model
OnsModel also has a clas
instance variable - schema.

This is described in the
Schema major component of
Model the Common Services domain.
bitMask
Node Proposition Error class
logicalOperator errorSignal

ancestors relationalOperator logging
_descendants 0..1 parent raiseSignal:
isRoot pseudoParents
isLeaf

* children

) Object
0..1 subject) 1 value
Objectiva Architecture Company Confidential

Figure 32: Model Object Model

EDnsHudelSuhﬁpp 1.0 Browszer

Dhbject
hodel

OnsErrar

OnsMode
OnsPraposition
subApplication
OnshodelSubipp

Figure 33: ModeENVY Subapplication

05/07/98

31 of 72

Entity Context

Having now reached the root of the operational level Entity hierarchy, let us summarize
before describing the knowledge level that provides the rules mechanism that governs the
operational level.

An ENTITY has a context. THENTITY CONTEXT has the following responsibilities:

As aNoDE, it is responsible for storing the relationship values of its subject entity
(COC ‘972618’). These are expressed in terms of its parent (NPA '972), its
pseudoParents (rate center ‘Plano’) and its children (empty) — see Figures 30 and 31.

As aDATA VALUES HOLDER, anENTITY CONTEXT is responsible for storing the

attribute values of its subject entity (e.g. country ‘United States’). A data value is a
complex object that stores a value in the context of a data type. A continuous data
value is only owned by one entity context (“has by value”), and we do not want to
make a complex object persistent when a simple value is being represented. On
being made persistent, a continuous data value is flattened into its string
representation, and stored in the stringValues variable. If a measurement has been
taken, the unit of the quantity is stored in the valueTypes variable.

The rules governing the relationship and attribute values @Nhgy CONTEXT are
obtained from its entityType, which we will discuss in the Knowledge Level section.

Finally, ENTITY CONTEXT keeps track of its change of state over time via its
changelog, events and history variables. We will discuss these capabilEiesTof
CoNTEXT when we demonstrate how the Event major component of the DME
supports the Currency and Ledger business objects.

05/07/98 32 0f 72

Knowledge Level

In the Operational Level above, we concentrated on instances of Region (United States,
Texas, Area Code ‘972, etc.). In the Knowledge Level, we define the rules governing the
types of Region (Country, State, Area Code, etc.). Particularly, we describe the
relationships governing the types of Region (e.g. a country may have states), and the
attributes that describe the types of Region (e.g. we want to capture a country’s
currency).

Entity Type

In the United States, the Telecom industry depends on the North American Numbering
Plan (NANP), previously administered by Bell CORE, now administered by Lockheed
Martin. Telecom providers receive updates to the NANP via the Local Exchange
Routing Guide (LERG), which is a set of flat files that describe the regions that make up
the NANP, and the carriers that are responsible for local service in those regions.

Revision Date: | 2/25/98 | Revised by: | Francis Anderson | Type Model: | North American Numbering Plan (Part)

LERG

State Province NPA Location LATA Region

NumberingPlanArea LATA

CentralOfficeCode Rate Center

Objectiva Architecture |
Figure 34: Partial Structure of the LERG.

The Partial Structure of the LERG (Figure 34) shows some of the types of Region
contained in the LERG, and some of the relationships between them. A Numbering Plan
Area (NPA) falls within either a State, Province, or NPA Location. An NPA is

composed of Central Office Codes, which are included in Rate Centers, which are part of

05/07/98 33 0f 72

Local Access Transport Areas (LATA). Note that this diagram will soon be invalidated
with the full implementation of Number Portability.

Object-oriented systems often support variability with inheritance. For example, one
way to describe how these types of regions vary would be to them subclaRsesaf
However, this would lead to new subclasses for every application, so Objectiva uses a
different technique. The core of this technique is provided by the Entity and Data
components of the DME. Entity and Data both use the Type Object [JohnsonWooIf97]
pattern to define new types of business objects. Entity Types are described in terms of
Attributes using the Property [Foote97] pattern. Attributes are also an example of the
Observation [Fowler97] pattern. This dense combination of patterns at the core of
Objectiva is part of what makes it so powerful, but is also part of what makes it hard to
learn.

It should also be noted that these requirements are purely for a billing application. A
trouble call dispatching application would require mapping capabilities, which would be
additional responsibilities of Region, but are not described in this document.

E[:unc:ept Outhne Yiewer [Relationship: Children]
Marne |T3,rpe I:
B Region Concept

- B Country Fegion
- B County Fegion
- & Durrrny Murmbering Flan Are Region
- ELATA, Fegion
- B LATA Region Fegion
- B MPA Location Fegion
- B Mumbering Plan Area Fegion
- E Province Fegion
- Hate Center Region
- State Region

Figure 35: Region Entity Types

The Region Entity Types (Figure 35) shows examples of the types of Region that may be
implemented by Objectiva. This shows the Nested Type Object pattern, since “Region”
is an instance afoNCEPT. So, the United States (&RTITY) is a Country (aENTITY

TypPE), which is a Region (@oNCEPT).

05/07/98 34 of 72

ONSREEIiDt class OnzRootEntityType OnsCountry class
OnsConcept - superclass dependents superclass
dependents rmethodDict bithdask methodDict
hithdask format selector ————————®HCOUNIY (frmat
selector Lw#region |subclasses attributes subclasses
attributes instanceariables rootEntity Type instancevariables
raotEntity Type arganization priceFlans organizatian
pricePlans name entityClass *name
entityClass »{classPool relationships classPoal
relationships | sharedPools subEntityTypes sharedPools
subEntityTypas schema concept | scherna
T [Thame - Country’
AT, | description

OrdetedColléctidr keyStrategy

firstindex e

IaW OnsHootEntityType

1 /iependems

5 | hithdask

3 Fee Durnry Mumbering Plaf Area’ selector ——————Hcounty

4 AT attribites

] F-LATA Region' rootEntityType

5 e P& Location' priceP|ans

7 L Murnbiting Plan Atea’ gntityClass

o Ly Pravince! relationships

9 —»=Rate[Canter subEntity Types

([s it AL concept

riarme T County”
description

Figure 36: Instance Diagram of the Region Concept

The Instance Diagram of the Region Concept (Figure 36) demonstrates the Power Type
pattern [Odell95], in which an instance@NcepPT(Region) corresponds to a subclass of
ENTITY (REGION). A ROOTENTITY TYPE (Country) within aCoNCEPTMay override the

default entityClass.

We create new entities by sending the message #createEntityNamed: to a Root Entity
Type, rather than sending #new directly to a cl&sTy TyPE is thus a factory for
ENTITY.

ENTITY TYPE>>CreateEntityNamed: aString

Aself entityClass newNamed: aString
withType: self

05/07/98 350f 72

Revision Date: 4/19/98 Revised by: Francis Anderson | Object Model: Entity Type Object Model
Type
(Type)
EntityType
createEntity
aRootEntityTyp
Entity class TemplateEntityType points to itself, in
(Entity) order to enable
1 queries
1
Concept 1 *subEntityTypes RootEntityType
name
createRootEntityTypeNamed: description 1
keyStrategy
Objectiva Architecture | Company Confidential

Figure 37: Entity Type Object Model

The Entity Type Object Model (Figure 37) brings us into the Type System of Objectiva,
and is an implementation of the Active Object Model [Johnson97] pattern. This pattern
is appropriate in those systems that have to support a large number of rapidly changing
business rules, which, according to Tom Peters in Thriving on Chaos, is happening more
and more frequently. We have chosen the traditional Entity Attribute Relationship model
as the vehicle for capturing the rules, which provide the implementation of the

Knowledge Level data [Fowler97].

r 1 OnsEntityTypeSubipp 1.12 Browser

Object
hodel
Onshiodel
Ons>electorFolicy
OnsEntityTypezelectorPolicy

DnsTEie

OnsTemplateEntityType
OnsConcept
OnsHootEntityType

SubApplication
OnsEntityTypesSubApp

Figure 38: Entity Typ&ENVY Subapplication

Since this model is somewhat abstract, let us recap from the previously stated examples:

05/07/98

36 of 72

* Region is an instance @bNcepT, with default entityClasREGION.

» Country, State, Numbering Plan Area, etc. are instancRo@fENTITY TYPE that are
sub (entity) types of Region.

* When we ask a Region type to create a new Region, by default, we will get an
instance oREGION, except if we ask Country, in which case we will get an instance
of COUNTRY.

We will now look at how we assSigRTTRIBUTES t0 anENTITY TYPE.

05/07/98 37 of 72

Attribute

An ENTITY TYPE (Country) has attributes, which describe the data values to be recorded
for anENTITY (‘United States’pof this type. An attribute defines a mapping between an
entity type (‘Country’) and a data type (String). The traditional solution to the definition
of attributes is to implement them as instance variables. There is absolutely nothing
wrong with this solution, in some circumstances. Everyone understands it. There is no
complex framework to learn. But if the business rules change, and we wish to add or
remove an attribute of Country, we need to change both the code (behavior) and the
schema of the persistence mechanism (structure).

We would also have numerous subclassdeafon, the need for which we are trying to
eliminate. Is this such an effort? Not as much in Smalltalk as in other languages, but we
would like to keep code and schema changes to an absolute minimum, since those who
can make them are a particularly limited resource, and often sit right on the critical path

of implementing a business rule change. Instead, we wish to be able change the business
rules through the maintenance of object instances. The problem is that these instances
must express rules governing different types of data.

There are a number of patterns that describe problems and solutions in this area,
including Property [Foote97] and Observation [Fowler97]. Objectiva adopts the Entity,
Attribute, Relationship (EAR) model as the basis of its solution, and uses traditional data
modeling terminology, with its standard meanings.

As stated above, we define an attribute as a mapping between an entity type and a data
type; this is in contrast to a relationship, which is defined as a mapping between entity
types, and is discussed later. Instance variables of an object do not usually make this
kind of distinction, the expression “has by value” is sometimes used to attributes, as
opposed to the expression “has by reference”, which describes relationships.

Eﬁuut Entity Type Outline Yiewer [Relationzhip: Attributesz]
Mame |TEHJE I;
B Country Region
= Abbreviation Attribute of Country
= Address Formats Discrete Collection Attribute of Country
~ Charge Band Discrete Attribute of Country
= Currency Discrete Attribute of Country
 Tax Price Plan Discrete Attribute of Country

Figure 39: Country Attributes

05/07/98 38 of 72

ER . A S
@nsﬁoniEﬁmyType OrdefedCollectidn © OnsAftribute'

dependents ' firstindex © | |dependents
hithvtask ; R lastindeic | .| [bithask
e : : > zelectar
name %—hAhhrewatmn
valueDomain DnanntmuuusDataElement
:ma.}{Slze "|dependents
n;ent_ny?jrpe o bithdask
r;:iataT?pe. Msalector
:;:iefauItData'\falue harme ——————— »Sitring'
derivation Strategy alueDornain
IRNE '[:sReqf.lin.adFlag b kwaeSize . _
2 1K changelogFlag description 1,
_keyStraLegy a Hoal printPalicy =
T il ol —}Charge Band' : i
| :—I-Address Formats’ 1
| vy :'
: L : »Tax Price Plan" '
: ...i il
Il
Flgure 40: The Attrlbutes of Country

We started to discuss continuous data (e.g. abbreviation) in the section on Data Value
above. A continuous data value only has meaning in the context of a single entity. In
contrast, a discrete data value (e.g. charge band 1), may be shared by a number of
entities, (e.g. all the countries in Europe), since there is only a limited set of values {'0’,
‘1, '2’, '3’} that it may take. In this case, the values of the discrete data type (charge
band) are strings, i.e. simple data types. Objectiva also allows the values of complex
data types (e.g. currency) to be available to a discrete data type.

05/07/98 39 of 72

Revision Date: 4/19/98 Revised by: Francis Anderson Object Model: Attribute Object Model

EntityType DataType
(EntityType) (DataType)
1 A 1
Attribute

defaultDataValue
derivationStrategy
isRequiredFlag
changelLogFlag

Objectiva Architecture | Company Confidential
Figure 41: Attribute Object Model

In the Attribute Object Model (Figure 41A7TRIBUTE could be represented as a UML
Association Class. This is an example of a data modeling pattern that is very common,
its most well known implementation being the relationships between Order, Order Line
and Product, which is an example used in many a modeling class.

At the conceptual level, an entity type (order) may be described by many data types
(product), and a data type (product) may describe may entity types (orders). The type of
relationship between these concepts is called a many-to-many association. In looking at
the association, we discover that there are attributes that we want to record about the
association itself. In the case of the order, we want to record the quantity of each product
ordered. In the case of the attribute, we may want to change the name (e.g. originating
and terminating charge band), specify a default value, etc.

Thus the association itself becomes a classiRiBUTE andORDERLINE), and the many-
to-many relationship has been resolved into two one-to-many relationships. But these
two relationships are of a very different nature. EAmTY (ORDER) is composed of
ATTRIBUTES (ORDERLINES). This should be represented in UML is a filled in diamond

but my Visio template does not support this. Whereas, the typperafBuTe is specified

by DATA TYPE, and the type oDRDERLINE is specified bypProbucT. Thus, in both cases,

we have replaced an association relationship by the combination of a composition and a
classification relationship. The classification relationship is another name for the

05/07/98 40 of 72

TypeObiject pattern. So we have another example of nested TypeObject, which, since
ATTRIBUTE IS also aDATA TYPE, is actually recursive.

Object -
Miodel
Onshlodel
OnsType
OnsDataType
OnsAttribute
Subfpplication
OnsAttributesubApp

Figure 42: AttributeENVY Subapplication

Before discussing the different data types supported by Objectiva, we will take a look at
how the Entity and Data major components of the DME fit together.

05/07/98 41 of 72

Entity and Data Major Components

The Package Diagram of a Major Component places the object model of its Minor
Components in context. So far, we have been following class level links between object
models, which are implemented using a “foreign key” type of approach. For example,
the Attribute Object Model (Figure 41) does not detineiTy TYPE andDATA TYPE, but
references them from the minor components of the same name, as indicated by the bold
face label in parentheses beneath the class name. The Attribute and Entity Type minor
components are both part of the Entity major component. Data Type, however, is part of
the Data major component. Since we must reference Data in order to fully describe
Entity, Entity is dependent upon Data.

Revision Date: | 11/27/97 | Revised by: | Francis Anderson Object Model: Domain Model Engine Major Components

—

Event

—

Entity

Data

—

Domain

Objectiva Architecture |
Figure 43: Major Components of the Domain Model Engine

The Major Components of the Domain Model Engine (Figure 43) also depicts the path
we followed when tracing the inheritance in the Operational Level ReamoN to

ENTITY andENTITY CONTEXT (in Entity), toDATA VALUES HOLDER (in Data), toNoDE (in
Domain).

05/07/98 42 of 72

Revision Date: | 2/17/98 | Revised by: Francis Anderson | Object Model: Entity Minor Components
MeasurementAttribute DiscreteCollectionAttribute Status
ContinuousAttribute DiscreteAttribute
_l Attribute _I
Relationship Entity
oy b
EntityType
Objectiva Architecture | Company Confidential

Figure 44: Minor Components of Entity

The Minor Components of Entity (Figure 44) shows the dependency of Attribute upon
Entity Type. This is an existence dependency: without an entity type, an attribute could
not exist. Existence dependency is a property of the composition relationship: a
component (child) is existence dependent upon its composite (parent). If the composite
(anEntityType) is deleted, its components (attributes) are too; if the composite is copied,
its components are too (anAttribute is the mapping between one Entity Type and one
Data Type).

So the Minor Components of Entity (Figure 44) tells us that we cannot really understand
Attribute unless we understand Entity Type. Also, it tells us that we have a number of
different types of Attribute, with the continuous / discrete discrimination playing a very
important role. This discrimination first occurs in the Data major component of the

DME upon which Entity is dependent.

05/07/98 43 of 72

Revision Date: 1/3/98 Revised by: Francis Anderson Object Model: Data Minor Components
Measurement
ComplexData Quantity
DiscreteData ContinuousData
— 2
DataValue
-
DataType
ObjectivaArchitecture | Company Confidential

Figure 45: Minor Components of Data

The Minor Components of Data (Figure 45) shows us that data comes in different
“dimensions”:

» Discrete Data has a limited domain of available values, which may be strings or
complex objects.

» Continuous Data has an unrestricted domain of values, which are representable as
strings or are the quantity of some unit, which may be recorded as a measurement.

05/07/98 44 of 72

Continuous Data

Abbreviation ‘USA'’ is a continuous data value, since the range of possible values that it
could take is effectively infinite, limited only by the maximum length that we choose to
allow for the value, and the value can be represented as a String. Basically, what this
means is that a continuous attribute is represented as an input field on a user interface,

see the United States Entity Editor (Figure 16).

..... - — LR T .
OnsRDDtEntltyType © OnsContinuousDataElement .
dependents | I i:i'epenf:Ier+ts i
bitMask = 1 : brtMask | AP
i PR b : String class
selaotor OnsAtt m_ TR selectar | R H comnrmnr
R ribute : : : i -
attrlbutes ne — . narrne —P'Striﬁg' R | Jsuperclass -
dependents 11 | 1- . : [methodDict
roo EntltyT pe bithiask | | : | : valueDomain %f
prizgePlans RN maxSize —=10 ormat s
entityClass selector | : descrintion ‘lsubclasses
Sl name %!%T:—_—J*'Abhfe'vi_atibh" - p. ot Hinstancevariables
relationshipls i et ntintPolicy e i
) L valueDormain Cores o P - *larganization,
subEntityTypes Y. I T il
. . maxSize —*3 s :Iname
concept] : o
e — entnyType o i classPool «
ae cripti;;m dataType. *[sharedPuools
; . defaultD%ta\r’alue -
keyStrateg B :
- - derwananStrategy . :
isRequirddFlag + 7 o :
- ‘Country’ changgl__@ﬂag .u_:g-;_"”t_-“? .
OnsContinuousDataialue
¥ de:pehdejnts
* fhithlask:
cnhte::ﬁt: T
b alue -—-—Pu$i\" i
e T I !

05/07/98

Flgure 46: Instance Dlagram of Contlnuous Data Value

45 of 72

Revision Date: 4/4/98 Revised by: Francis Anderson

Object Model:

Continuous Attribute Object Model

ContinuousDataValue
1 context

DataType

(ContinuousData)

ContinuousDataElement
(ContinuousData)

Attribute
(Attribute)

Objectiva Architecture

Company Confidential

Figure 47: Continuous Attribute Object Model

Object -
hiodel
Onshiodel
OnsType
OnsDataType
OnzDataElement
OnsContinuousDataElernent
SubApplication
OnsContinuousAttributeSubApp

Figure 48: Continuous AttributeNVY Subapplication

05/07/98 46 of 72

ﬁDimensiun Dutline Yiewer [Relationship: Children]

Mame |T3,rpe
B Continuous Data Elerent Oimension

- Date Date

- Duration COngDuration

- Morth Armerican Phone Murmbe OnsMorthAmericanPhoneMumber
- Murher Murnber

- String otring

- String Collection OnsStringCollection

= Time Tirne

Figure 49: Continuous Data Elements

OnsDimension
de Iahdéﬁts
h'itr'uiask
se El[:tgr —}#@Lj_nh_n.unus[lataElement
u:nts -—OrdereanIIectan L
&efa!ul}t;l i I frstlndex :'/_;OnanntinunusDataEIemem
S = o[- dependents
i " |bithask _ L
R N selectar —— wnorthiAmericanPhaneNumber - . |
3 : Criarae » Morth American Phone NMurmber
FE . valueDumam *Onshorth&mericanPhoneMumber class
g © maxSize: superclass
; E : : : d:E'SEI:iriF'JtiDEI"i methadDict
I PN S jprmtPalicy format
! a . N subclasses
| ' g: ' \Date instancetariables
! 1EI ? Turation' organization
- i\\‘Numher narms
i . | . N\, e String' classPool
o i 1y fString Collection’ sharedFools
I S “Tifne! schema
ML R AT I T N AN I
Figure 50: Continuous Data Elements
05/07/98 47 of 72

Revision Date: | 3/15/98 | Revised by: Francis Anderson | Object Model: Continuous Data Object Model
DataValue DataElement
(DataValue) (DataType)
ContinuousDataValue ContinuousDataElement <<ValueDomain>>
0..1 context - . 1
value printPolicy
Duration class String class Time class
Date class Number class StringCollection class

Objectiva Architecture

OnsContinuousD ataSubApp 1.8 Browser

Dhbject
hodel
Cnshdodel
DnsType
OnsDataType
DnsDataElement
COnsContinuousDataElerment
Cngvalue
DneDatavalue
COneContinuousDatatalue
subApplication
OnsContinuousDataSubApp

Figure 51: Continuous Data Object Model

Figure 52: Continuous DatNVY Subapplication

05/07/98

48 of 72

Discrete Data

Charge Band ‘0’ is ®I1SCRETEDATA VALUE, Since we have constrained its available
values to ‘0, ‘1’, ‘2’, or ‘3’. Basically, what this means is that a discrete attribute is
represented as a combo box on a user interface, see the United States Entity Editor
(Figure 13).

E Discrete Attribute Outline Yiewer [Relationship: D ata Yalues] Mi=]
MNarne |T3,fpe I:
B Charge Band Discrete Attribute of Country
S| Charge Band
= Charge Band
- 2 Charge Band
= 3 Charge Band

Figure 53: Charge Band Data Values

ﬁEnlit}' Editor [Relationship: Children]

County
I Idnited States Wiew B elationships
— Tree Wiew
Mame |T3,rpe [ﬂ
& United states Cauntry
~B Ameritech LATA Hegion
~B Bell Atlantic LATA Hegion
- Bell South LATA Hegion
~B |ndependents LATA Hegion
~B Mynex LATA Hegion
~B Off Shore And International LATA Region
- Pacific Telesis LATA Region =
e T T e b b cm mb mvem, Dm0 mvim memb i, | AT Tm i e,
— Data Yalues
Ahbbreviation: S A -
Charge Band: -
Addrezs Formats: 1 |
2 | |
Cumency: 3
—_ - —_— I T T j

Figure 54: Charge Band Combo Box

This is an example of a Category Observation [Fowler97]. In this cRss;RETEDATA

VALUE instance may be shared by a number of objects, and the meaning of Charge Band
0 is distinct from the meaning of Charge Band 1. Due to its sharing, Discrete Data Value
is an example of the Flyweight pattern.

05/07/98 49 of 72

e

OhsRaotEntityType

¢ |deperidents and.) :Qrdn:ar:edc:ollection
© lbithtask” firstinde::
;a:elect:o:r: lastindex
o [pttributes — RIS 1 —
¢ |raotEntityType ueDatnain ——————4—W2 ——»1'
o |priceRlans - - ABizél . g
© |entityClass: 3|:r|pt|on o g ——T
irEEIatiu:n:ship:s' - 5
- |subEntityTypes - [T
* |eoncept B
hémé%ybpuntry' | P— -OnsDiscreteDatatalue
iﬂéscrip:tilon: HEEEE . ‘;OnsCD plexDatavalue dependents
:kéySt:rét:egjf depeind nts o bithdask
T bithask] context
context value —»1'
value *abbresiation
v description
Lalue OnsComplexDatavalue
he Erjdeﬂq dependents
HETEE bit agk:: .o hithdask

Pomtext P10 i] |sontext

: ’L AR C value

W e — ¢

! OrsComplexDatavalue
..... |denendents
""" hithdask
SRR - |context
L palue

Figure 55: Instance Diagram of Discrete Data

The Instance Diagram of a Discrete Data (Figure 55) shows us thaiphkewuous

DATA VALUE, DISCRETEDATA VALUE places a String (‘0’) in the context oDaTA TYPE
(Charge Banyd In this case, however, the subclas®fA TYPE is DISCRETEDATA

ELEMENT. A discrete Data Type (Charge Band) stores its available values {0, 1, 2, 3} in
the valueDomain collection.

We may choose to describe a number of different types of Region, (e.g. Country, State)
in terms of a Charge Band, or we may choose to describe a phone call in terms of its
originating and terminating Charge Band. We will describe how this is done later on, but
for now we will say that we are placing a Discrete Data Type (Charge Band) within the
context of an Entity Type (Country). This context is propagated down to the values of
the data type, but the meaning of Charge Band 0 has not changed. We may, however,
have a different domain of values available to State than Country, and within the context
of a phone call, the differentiation between originating and terminating is critical. Thus,
anENTITY CONTEXT does not directly hold on toascRETEDATA VALUE; instead, it holds

on to aCoMPLEX DATA VALUE..

05/07/98 50 of 72

Revision Date: 3/15/98 Revised by: Francis Anderson Object Model: Discrete Attribute Object Model
Attribute 1 DataType
(Attribute)
DiscreteAttribute DiscreteAttribute DiscreteDataElement
(DiscreteData)
dataValues
0..1 context
* valueDomain
ComplexDataValue 1 DomainStrategy

(DiscreteData)

Alias
localStringValue

DynamicDomainStrategy StaticDomainStrategy
class class

Objectiva Architecture

Figure 56: Discrete Attribute Object Model

EDnsDiscreteﬁttrihuteS ubApp(Apnl 11, 1998 5:55:55 pm] Browser

Cibject
hiodel
Cinshiodel
CnsType
CnsDataType
CinsAttribute
CnsDiscretedttribute
CinsDataElerment
CnsDiscreteDataElement
OnsComplexDataElement
Cing*alue
CinsDataalue
CinsCaomplexDatatalue
CnsAlias
Cns0ynamicDomainStrategy
OnsStaticDomainStrategy

4]

Figure 57: Discrete Attribute ENVY Subapplication

05/07/98

51 of 72

EDimensiun Outhne Yiewer [Relationship: Children]

Marme

| Type

B Discrete Data Element

Dirnension

Architectural Order
Autharization Status
Charge Band

Day Of Week
Directionality
Equiprment Status
Logical Operator
FPhone Type
Relational Operator
Relationship

SV Card Type
Skill Level

Tirne Period Type

HEH

EEEHEHEEEEEEAE

Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment
Discrete Data Elerment

Figure 58: Discrete Data Elements

S [=] E3

EDiscrete Data Element Dutline Yiewer [Relationship: Data Yalues]

- Pending Activation

- Pending Provisioning
- Provigioned

- Heceived

- Shipped

- Sold

Mame |T3,rpe

B Equiprment Status Discrete Data Element
- Active Equipment Status

- Packaged Equipment Status

Equipment Status
Equipment Status
Equipment Status
Equipment Status
Equipment Status
Equipment Status

Figure 59: Discrete Data Values

05/07/98

52 of 72

OnsDimension

EflépenfdéhtSE o
bifhask
selector

anits ————]

OnsDiscreteDataElement <€

defaultUnit

Eqguipment Sta
- quip

POrderedCollectia

dependents
: bithdask
| wfdiscreteDataElement Il ats
| wOrderedCollection seler o’r_/
| ffrstindex name
| wivalueDomain — |
|lastindex)
1 maxSize
o description
§e
4
15
s ™
| \'F‘hone Type'
o \'Directionality'
g [*y, Charge Band
10 s, Relationship'
1) \.‘C&uthorization Status'
' 19 "y SIM Card Type'
13 [, Day Of Week'
\X'Lugical Operator'
M f Relational Operator
1.5 - [4 Time Period Type'
16 ‘Skill Level
17 ‘Architectural Order'
18
19
- |20

firstindex

astindex 7]

—=
=

fﬂ_)_,.yOnsDiscreteDataVaIue

[e T I I I e T

N

F AV AR A A A A i

s
=

dependents
bithask

context
value
abbreviation
description

H»Received'

Pending Frovisioning'
Provisioned'
‘Shipped'

‘Sold'

\ ‘Pending Activation'

‘Active’

05/07/98

FigiJke 60: Instance Diagram of Discrete Data Elements

53 of 72

abbreviation
description
value

Revision Date: 3/21/98 Revised by: Francis Anderson Object Model: Discrete Data Object Model
DataValue DataElement
(DataValue) (DataType)
DiscreteDataValue) DiscreteDataElement
* valueDomain 1 context

dataValues

Objectiva Architecture

Figure 61: Discrete Data Object Model

ﬁI]nsDiscreteDataSubﬁpp[ﬁpril 12, 1998 6:45:44 pm] Browser

Clbject
hodel
Cnshdodel
CnsType
CnsDataType
OnsDataElerment
OnsDiscreteDataElement
Cnsialue
OnsDatavalue
OnsDiscreteData’alue
subApplication
OnsDiscretellataSubApp

Figure 62: Discrete DataNVY Subapplication

05/07/98

54 of 72

Complex Data

Currency is a Complex Data Element since the values that it may take are complex
objects (instances @URRENCY), rather than just simple strings. Complex data allows us
to handle the problem introduced by the statement “One man’s entity is another man’s
attribute”. Basically, what this means is that a discrete attribute with a complex data type
is represented as a combo box on a user interface but the entries in the drop down are
complex objects, not just strings, see the United States Entity Editor (Figure 13).

EEntit}l Editor [Relationship: Children]
County
I Idnited States Wiew Felationzhips
— Tree Wiew
Mame |T3,rpe Iﬂ
& United states Cauntry
~B Ameritech LATA Hegion
~B Bell Atlantic LATA Hegion
- Bell South LATA Hegion
~B |ndependents LATA Hegion
~BE Mynex LATA Hegion
-B Off Shore And International LATA Region
- Pacific Telesis LATA Hegion
- Southwestern Bell Corporati LATA Region =]
— Data Values
Abbreviation; I LIS, =
Charge Band: I 0 [;I
Address Formats: I OrderedCallection [address-»uS Sheet Edit... |
Currency:
Tax Price Plan:

Figure 63: Currency Selection

EDimensiun Outline Yiewer [Relationship: Children) [W[=] E3

Mame |T3,rpe I;
E‘?Currenw Dirriension

= Pounds Sterling Currency

= LS Dollar Currency

= en Currency

Figure 64: Currency Dimension

05/07/98 55 of 72

Sl TS ' ey ORSCONpOASER T
tependeris - o cndatic
belktash 1 i Ik
sdleri Crie Dk rd st ibale P
CIGET T P 1] T n;|r|'|;-| w“
ropiEntiyType hitdazk | ki e e =Hapereiris
o - szl tinaaSita hithdack,
o i oy B dawption kY
||'!-Iu|ril:'.:.. HJ'.ﬂl:llilnl." raniesSarsineF lag iy et
By Type raxdice | fafa Lt
corpt -rrlr._-f'rn-rl |T l
g ®Caunin' HalaTypa L Ll
dascsplicn efafiD ata i .
by Sirdligy il vl] Sl i gyt - gt clasa
LIEL GO
eRequrdeFlig i i
| :rasgaLagFlap |
=l o JioEra
rdn:-mm.almiur |
- i - |.u':|||.n..|.ri
nylsnr ey Enshisg
:-lg:lr-lzrim
DrwComplesiinislue. tame | T
joapeadants thisaFod
it‘l?'!"i_ll' . shiamdFoak pfiie
g':':""ﬂ"| T 1 TT T 11 Il TEl| [l | | dak
[k = (T
i i |
mungn hletyy
r"r"-zﬂljz: :
111
b hangal by | !

Figure 65: Instance Diagram of a Complex Data Value

The Instance Diagram of a Complex Data Value (Figure 65) demonstrates that the value
of aComPLEX DATA VALUE may be any kind of complex object, in this case an instance of
CURRENCY. Although there is only a limited set of currencies, they are instances of a

complex classQURRENCY), rather than a simple class (e.g. String). The same is true for
tax price plan.

05/07/98 56 of 72

ﬁDimensiun Outhne Yiewer [Relationship: Children]

Marme |T3,fpe I:
B Complex Data Element Dimension

-~ H Address Complex Data Element
~H Base Price Plan Complex Data Element
-~ Charge Data Element Complex Data Element
- Caountry Camplex Data Element
- County Camplex Data Element
- Currency Camplex Data Element
- Discrete Data Element Complex Data Element
- B Duration Complex Data Element
- B Ewent Complex Data Element
~H heasurement Data Element Complex Data Element
-l Mumbering Plan Area Camplex Data Element
~H Phaone Madel Complex Data Element
~E Rate Center Complex Data Element
- Root Tirme Period Definition Complex Data Element
- B SIv Card hiodel Complex Data Element
- H State Complex Data Element
-~ Tax Price Plan Complex Data Element

Figure 66: Complex Data Elements

E[:umplex Data Element Outhne Yiewer [Relationship: Children]

Marre Type =
= MNumbering Plan Area Complex Data Element

- 207 Murmbering Plan Area

- 214 Murmbering Plan Area

= 800 Murmbering Plan Area

=BT Murmbering Plan Area

- B85 Murmbering Plan Area

g7 Murmbering Plan Area

Figure 67: Complex Data Values

05/07/98 57 of 72

- OnsDimension

: [tependents
©: bithdask

::|selector

—+»HoomplexDataElement

: f|units ————»DrderedCallection

OnsComplexDataElement

firstindex

- [defaultUnit

lagtind;
1
2
3
g
bl
B
7
[
9_

10
11
12
13~
14
15
e
17
o8
19
b

73

dependents
bithdaszk
selector

narme
walueDomain
maxSize

description
contextSensitiveFlag

dependents
bithdask
selector

‘Rate Center'

\'Country'

\'Address'
\'Currency'
N ‘State’

\'Tax Price Plan'

\"Cnunty'

'S Card Model

[Base Price Plan'

[Charge Data Element’
[“yFhone Madel’

[Duration’

Ewent'

ty Discrete Data Element’

Measurement Data Element’
‘Root Tirme Period Definition’

attributes
rootEntityType
pricePlans

entityClass
relationshipg
subEntityTypes

r#numberingRlanbrea
*Numbering Flan Area’
™ OnsRootEntityType

OnsConcept

dependents
bitMaszk
selector
attributes
rootEntity Type
pricePlans
entityClass
relationships

. [sUbEntityTypes

concept

>

narne
description
keyStrategy

Feffregion

w Mumbering Plan Area’

05/07/98

FiQUré 68: Instance Diagram of Complex Data Elements

58 of 72

Revision Date: 4/4/98 Revised by: Francis Anderson

Object Model: Complex Data Object Model

DataValue
(DataValue)

ComplexDataValue
0..1 context

DiscreteDataElement
(DiscreteData)

ComplexDataElement

1
<<Value>>

contextSensitiveFlag

isContextSensitive

1 valueDomain
<<Type>>

values

Objectiva Architecture |

Company Confidential

Figure 69: Complex Data Object Model

E OnsComplexD ataSubApp 1.0 Browser

Cbject
hiodel
Cnzhdodel
CnsType
CnzDataType
CnzDataElement
CnzDiscreteDataElement
OnsComplexDataElement
Cnsalue
OnsDatavalue
OnsComplexDatavalue
SubApplication
OnsComplexDataSubipp

Figure 70: Complex DatBNVY Subapplication

05/07/98 59 of 72

Discrete Collection Attribute

Address formats {'US Postal Address’ ‘US Post Office Box'} is a discrete collection

data value, since, although we have constrained the available values, multiple values may
be selected. In this case, the available values are also complex objects. Selection via a
user interface is performed via an “assign and remove” metaphor.

EEntit}l Editor [Relationzship: Children]

CoLntry
I rited States Yiew Felationzhips
— Tree Yiew
Mame Type Iil
B Lnited States Country
- B Ameritech LATA Fegian
~B Bell Atlantic LATA Fegian
- Bell South LATA Region
~B Independents LATA Fegian
-~ Mynex LATA Hegian
~B Off Share And International LATA Region
- Parifir Talazis | ATA Faninn ;I
— DataValues
Abbreviation: I LIS =
Charge Band: I 0
Address Formats: I OrderedCollection [address-»uSE
Ehddress Formats
Aoailable Azzigned]
LIS Rural Address = LIS Paost Office Box =~ =
Feb | [US Street Address

Lkl

Ok i Cancel

Figure 71: Address Format Selection

05/07/98 60 of 72

s b
P T
oTER YTy P
pac e ans
by C

pendenix !
EHH!

'ﬂiﬂ'lcnahu-
e bErdilp Typis
joarcogl ;
e

anciiglon
Emmm.

Cratrce

#US Tieed Addsass

b ponidiiy !
o e, e
Pinsligior G ibeslgi ——— o
Y P
sekacip HT;}:run 2 ““"’_':'.T.T i
s b I:HF! Famuiy ¥ eyl s : ¥iEpe
ks s Dl | | o oo | |
rassize | | l I 8wt g [i !
ipll:erpl"! | 1 :nﬂ"*ﬂhiL palatiandtapd, |
HaiaTise . onen. ST [abEnulFTynes
Hetnai a1 o .
dllmh.lﬁl:llhm' | i:
ERaqurIripg. nribodlict
= barg plagFlsg Fraroad
HormadiEtrstggy’ i T PERTT e
. '. relanceanahles i
faiy e 2alian ———
bedES i il me
] = kiran Fmal o= ey Typs
HE shawdPrals 1 :f:&":
IS ' helatimhips
!! ” [mabEntriy Types
e || s}
s ——-115 Pigi Tie Bos' e
= LT = dasrnzion
|' Yot s Bty

Figure 72: Instance Diagra

05/07/98

m of a Discrete Collection Data Value

61 of 72

Revision Date: | 3/15/98 | Revised by: Francis Anderson | Object Model: | Discrete Collection Attribute Object Model

ComplexDataValue DiscreteAttribute
(DiscreteData) (DiscreteAttribute)
DiscreteCollectionDataValue DiscreteCollectionAttribute DataType
1 context 1
. <<DiscreteValue>>
value

* valueDomain

Warning: It is not
possible to transform

DiscreteCollectionValue DiscreteCollectionAttribute DiscreteDataElement

properly, so it is the .
equivalent of a (DiscreteData)

persistent collection

DiscreteValue is either a discret
data value or an instance from a
ComplexDataElement's - -
valueDomain. i.e. not a DiscreteAttribute

ComplexDataValue (DiscreteAttribute)

Objectiva Architecture

Figure 73: Discrete Collection Attribute Object Model

ﬁ OnzDizcreteCollectionAttibuteSubbApp 1.4 Browser

Clbject +
hodel
Cnshiodel
CnsType
CnsDataType
CnsAttribute
OnsDiscreteAttribute
OnsDiscreteCollectionAttribute
OnsDataElerment
OnsDiscreteDataElerment
OnsComplexDataElement
Cnsivalue
OnsDatavalue
CnsCaomplexDatat/alue
OnsDiscreteCollectionDatavalue
subApplication 3

Figure 74: Discrete Collection AttribuEI\lVTS_ubapplication

05/07/98 62 of 72

Data Type

The problem with nesting the TypeObject pattern is that it is very hard to know when to
stop. We have not yet discussed how Objectiva handles quantities, we will do this when
describing the Currency business object. But, suffice it to say, Quantity requires yet
another application of TypeObject, because we measure quantities (e.g. 5 feet) in terms
of a unit (feet), which are convertible to other units (e.g. inches). Convertible units are in
the same dimension (e.g. distance).

E Dimension Outline Yiewer

ﬁ Dimension Dutline Viewer

Mame Type [; NE:IrT!E T)rpe . [;
& Currency Dimensioh @éData Dimensian
& Pounds Stering Currency i~ Bits Data
& US Dollar Currency i Bytes Data
“ Yan Currency i Large Packets Data
- Medium Packets Data
= Small Packets Data
["jDimension Outline Viewer - 10]] T-jDimension Dutline Viewer [_ (3] x]
N?me |T)rpe : |- Mame | Type |=
l?lesta_nce D!mensmn E ; Diransion
centimeters Distance Minutes Duration
-~ feet Distance - Minutes Ta One Decirmal Place Duration
g |n_ches D!stance “ Seconds Duration
- Kilometers Distance
- meters Distance
o hiiles Distance
= Yards Digtance
T7jDimension Dutline Viewer == B3 "jDimension Outline Viewer
Mame | Type |= Mare Type =]
Biolume Dimensian I eight Dimension
- cubic centimeters Wolume [ograms ‘Weight
- Fluid Qunces “olume o Kilagrams Weight
- Gallons Walume milligrams We!ght
“ Liters walume - Ounces Wieight
- Paounds Weight

Figure 75: Unit of Quantity Dimensions

Now, particularly with object databases, reachability is an issue. This means that all
objects must be reachable from a few well-known objects that act as the roots of the
graph of objects. It is desirable to reduce the number of well-known, or bound, objects.

By their very definition, data elements are defined in a context-free manner, but how
many data elements will there be in an Enterprise, and how volatile will they be.
Similarly, concepts and countries are context-free.

Dimensions, on the other hand should be relatively stable, and make a nice foundation
for the Objectiva Type System. So we apply the power type concept one last time, and
introduce an additional set of dimensions that correspond to the subclaBsaes of

ELeEMENT. We call these “class dimensions”, since we put the knowledge that a class is
also a dimension in the instance creation (new) method of the class, which, in addition to
creating a new instance, adds it to the units for the corresponding dimension.

05/07/98 63 of 72

CONTINUOUSDATA ELEMENT class>>newNamed: aString ofType: aClass
Aself addIinstance:
(self new initializeNamed: aString
ofType: aClass)

DATA ELEMENT class>>addInstance: anObject

AOnsDimension addUnit: anObject
toDimension: self name stripPrefix

EDimensiun Outline Yiewer [Relationship: Children]
Mame |T3.rpe I:
Charge Data Element Dirmension
Complex Data Element Dirmension
Concept Dirmension
Continuous Data Element Dimension
Country Dirmension
Currency Dirmension
Data Oimensian
Discrete Data Element Oimension
Distance Dimension
Duration Dimension
hMeasurement Data Element Dimension
“olume Dimension
Weight Dirmension

Figure 76: Objectiva Dimensions

05/07/98 64 of 72

Revision Date: | 3/15/98 | Revised by: | Francis Anderson | Object Model: | Data Type Object Model
N
For schema binding purposes, (Type)
class (e.g. OnsDiscreteDataElement)
may be represented as a dimension
(discreteDataElement). New
instances of the class are added as
units of the dimension
Dimension DataType
name
valueDomain
maxSize
createValue:
* 0..1 defaultUnit dataType
<<Unit>> getDefaultValueFor:
getValue:
A
DataElement
<<ClassUnit>> MeasurementUnit description
(Quantity)
Objectiva Architecture | Company Confidential
Figure 77: Data Type Object Model
rj0nsDataTypeSubApp 1.0 Browser
Dhject
Model
Onshdodel
OnsType
On=DataType
OnsDataElement
OnsDimension
subApplication
OnzDataTypesubipp
Figure 78: Data TypENVY Subapplication
05/07/98 65 of 72

Framework Development

The Attribute Object Model (Figure 39) tells us that we may have an improvement
opportunity. We know from the Entity Package Diagram (Figure 41) that we are going
to have a number of different subclassesoifrRiBUTE. The Attribute Object Model tells

us that each subclassAfTriBUTE will be reflected somehow in thEaTA ELEMENT and

DATA VALUE hierarchies. This is the kind of combinatorial subclass proliferation that
patterns minimize. In this case, a Strategy for value domain would appear to be in order
so Data Value, Attribute and Data Element would share a Continuous Value Domain,
rather than each having a continuous sub class. As yet, this work has not been
performed. The implementation of Strategy in this context would be an example of
refactoring. Let us see how this process proceeds, and whether it is appropriate in this
case.

The first question is “Do the hierarchies qualify as parallel?”

I "1 OnsDataElement Hierarchy Browser

Ohject [Object A1l Object =
hodel Iodel hodel
Cnzhiodel Cnshiodel Cnzhdodel
OnsYalue OnsType OnsType
On=Dataalue OnsDataType OnsDataType
CnsCormplexDatatalue CnsAttribute CnsDataElement

OnsAlias
OnsDiscreteCollectionDat
OnsatatusDatavalue
DnsContinuousDatavalue
OnsAtithrmeticvalue
Onshieasurement
OnsCluantity
OnsDiscreteDatavalue

OnsDiscretesttribute
OnsDiscreteCollectiond
OnsStatusAttribute

OnsheasurementAttribut

OnsContinuousDataElemr
OnsDiscreteDataElernent
DnsComplexDataEleme
OnshieasurementDataEle
OnsChargeDataElement

Figure 79: Hierarchy ComparisoDATA VALUE; ATTRIBUTE:

05/07/98

66 of 72

DATA ELEMENT

Relationship

E Concept Dutline Yiewer [Relationzhip: Relationzhipz]

b Queties

L-oncept
Relationship of
Relationship of

Fegion
Fegion

Figure 80: Region Concept Relationships

Eﬂelatiunship Outhine Yiewer [Relationship: Range]

Marme |T3’PE

= Children Felationship of Fegion
- Netwark Address Block Concept

~ Region Concept

Figure 81: Range of Children Relationship

Oq's.C.on}:efJI i
dependerits
hithdask -«

selector
attributes

—w-fregion

rontEntity Type -
pricePlans
entityClass

OrdefedCallzction
firstindex

relationships

subEntityTypes

Y

lastindex

OnsRelationship

dependents
bithdask

1

[ST T R W)

‘Queries’

w|zelactor

rootEntityType
narne
contextEntityTypes
range
relationshipType
min

max

= Children'

Array
1

2

dnsConEeét

dependents
bithdask
selector
attributes
roctEntityType
pricePlans
entityClass

¥

relationships

subEntityTypes

—e#networkAddressBlock

Figure 82: Instance Diagram of Concept Relationship

05/07/98

67 of 72

Eﬂuut Entity Type Outline Yiewer [Relationzship: Children]
Mame |T3.rpe I:
B Country Region
-~ Children Relationship of Country
. [LATA Region In Children of Cauntry
=B MPA Location In Children of Country
- Province In Children of Country
i E State In Children of Cauntry
=B Price Plans Relationship of Country
“H Tax Price Plan In Price Plans of Country

Figure 83: Country Relationships

The Country Relationships (Figure 81) states the rules that a Country can have children
of LATA Region, NPA Location, Province or State, and may also have a Tax Price Plan.

G ent Ty Type
fapenzdEntn
1 s Ol g Erviel y Typw
na pscian k4 peridenla
SIS o | e et
TR nl iy Ty | wil b
S - rgered Coliecnion : i v
vy Clans ':."“:""' OnsREEEnAEbG | el iy Ty pe
vislianships T BNt pew— | i Lo
| Aulw T
fied LET1 8 Tydt i 1 T ?:,,—.-:".&Hr Ie= iyt Tas
arcegi 17 Epra | e ol shige
l— 3 1 walacior | ik'aze < o e
bl [} E—x— ¢ e nliy Typn T wibETE s Trnes
Jlacoripinn Tinarn Price Plare i R ia arcmgl
: budura -
“"“'""‘:'.l" e e} iy Thy e 2 r\--1'IF||l-|--':||u 1 i —————t =
H b prnp| e
g gl i
¥ mintianstpeTom B TrTTT (ErEE
L] y <]
2 i]
1
. nim | | i
I—- prgifanle
Orolienca o LLLL
¥ i pend s THH
Pnptenrkldden g Blerk T T+ 1874 Rughin
H. alec by —— A g =T HE S PR
I'rl..:.,,m:. b
= ey T ypm
[«-L-:P wive
pEridyi laas
wlEmslups
I:_‘|:|_||r_|._h._|:. o Ll ALl Rl

Figure 84: Instance Diagram of Root Entity Type Relationship

05/07/98 68 of 72

Revision Date: | 4/19/98 | Revised by: | Francis Anderson Object Model: Relationship Object Model
TemplateEntityType Type
(Entity Type) (Type)
1
. Relationship EntityType RootEntityType
name (EntityType) (Entity Type)
relationshipType
min
max 1
1 RelatedEntityType
*range contextType
Concept * | iterator
(Entity Type) min * subEntityTypes
max
The range concepts
provide the available
rootEntityTypes that may
appear in the context of the
relationship
Objectiva Architecture Company Confidential

Figure 85: Relationship Object Model

ﬁI]nsFIElatiunshipﬁuhﬁ.pp[ﬁ.plil 11, 1998 6:14:57 pm] Browser

Cibject
hlodel
Cinshiodel
CnsType

subspplication

CinsEntityType
CnsHelatedEntity Type
CinsHelationship

CnsHelationshipSubipp

Figure 86: RelationshieNVY Subapplication

05/07/98

69 of 72

Use Cases

Revision Date: | 4/25/98 | Revised by: | Francis Anderson | Action Sequence: | Maintain Regions
| Actor | | Country | | Entity | | Domain
create gountry
create sub region
create child
add child
Objectiva Architecture | Company Confidential

Figure 87: Maintain Regions Action Sequence

MAINTAIN REGIONS class>>timeLineDefinition

(self runCondition: #Default) result

self regressionTest

Aself actions: #(createCountry

createSubRegion)

result: #country
businessObject: #Country
roles: #(regionAdministrator)

05/07/98 70 of 72

MAINTAIN REGIONS class>>createCountry
((self getAction: #createCountry) runCondition: #Default) result
(self getAction: #createCountry) regressionTest

A(self sends: #getOrCreateEntityNamed:
to: #rootEntityType
with: #(countryName)
result: #country
assert:
[:s]| | country |
country := s result.
country entityType == s rootEntityType
and: [country name = s countryName
and: [((OnsDimension getUnitsinDimension: #country)
includes: country)
and: [(country addressFormats isKindOf: OrderedCollection)
and: [(country currency isKindOf: OnsCurrency)
and: [(country taxPricePlan isKindOf: OnsPricePlan)
and: [country taxPricePlan typeSelector == #taxPricePlan]]]]]1])
rootEntityType: #selectedRegion
inConcept: 'Region’;
variable: #selectedRegion
value: 'Country’;
variable: #countryName
value: 'Test Country’;
variable: #abbreviation
value: 'TST;
variable: #chargeBand
value: '3';
variable: #addressFormats
value: #('US Street Address’);
yourself

05/07/98 710f 72

MAINTAIN REGIONS class>> createSubRegion
((self getAction: #createSubRegion) runCondition: #Default) result
(self getAction: #createSubRegion) regressionTest

(self sends: #getOrCreateSubRegionNamed:ofType:
to: #region
with: #(regionName
regionType)
result: #subRegion
assert:
[:s| | region subRegion |
subRegion := s result.
region := s region.
subRegion entityType == s regionType
and: [subRegion parent == region
and: [(region children includes: subRegion)
and: [subRegion name = s regionName]]]])
precondition: #region
actionSequence: self
action: #createCountry;
variable: #regionName
value: 'Test Child Region’;
variable: #childrenTypes
from: #region;
selection: #regionType
from: #childrenTypes
on: #selectedRegionType;
variable: #selectedRegionType
value: #first;
variable: #abbreviation
value: 'TS';
yourself

05/07/98 72 of 72

