
Preface

...

September 2001 Ákos Frohner

Workshop Chair

ECOOP 2001



Organization

...



Table of Contents

Adaptive Object-Models and Metamodeling Techniques : : : : : : : : : : : : : : : : : 1

Nicolas Revault (University of Cergy-Pontoise & Paris 6),

Joseph W. Yoder (The Refactory, Inc.)

Author Index : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17



VIII



Adaptive Object-Models

and Metamodeling Techniques

Nicolas Revault1 and Joseph W. Yoder2

1 University of Cergy-Pontoise (& Paris 6),

33 bd du Port 95011 Cergy-Pontoise Cedex, FRANCE

Nicolas.Revault@lip6.fr
2 The Refactory, Inc.,

209 W. Iowa Urbana, IL 61801, USA

yoder@refactory.com

Abstract. This article reports on the presentations and discussions

of the workshop on �Adaptive Object-Models and Metamodeling Tech-

niques�, held in conjonction with Ecoop'01 in Budapest on June 2001.

After overviewing the themes of the workshop, its organization is brie�y

presented. This is followed by a summary of the works presented and

a section dedicated to develop the results of the workshop. The main

conclusions are about comparing and locating one towards another three

techniques of interest: � Re�ection at the Language Level, � Adaptive

Object-Models and � Meta-Tool Approaches to meta-modeling. More-

over, a discussion on the needed levels of abstraction, and on their nature,

is also developed in reference to the so-called �OMG four-layer architec-

ture�.

1 Overview

A system with an Adaptive Object-Model (AOM) has an explicit object model

that it interprets at runtime. If you change the object model, the system changes

its behavior. For example, a lot of work�ow systems have an Adaptive Object-

Model. Objects have states and respond to events by changing state. The Adap-

tive Object-Model de�nes the objects, their states, the events, and the conditions

under which an object changes state.

There are various techniques that share common features with AOM's. Espe-

cially, those that capture business rules and build domain -or business- speci�c

languages, namely � Grammar-Oriented Object Design (applied in the three ma-

jor areas of con�gurable work�ow, tier-to-tier mapping and object graph traver-

sal) or � Meta-Tool Approaches1, à la MetaEdit or à la MétaGen (applied in

various �elds of information system modeling: telecom, �nance, medicine, etc.).

There are other techniques which also describe ways to build systems that change

behavior at runtime, namely � Re�ection at the Language Level (mostly applied

to programming language design). What is actually common to those various

1 sometimes also refered to as �Meta-CASE Tool Approaches�.



2

techniques is that they are leading to, or are driven by, meta-modeling princi-

ples and implementation using OO languages.

Adaptive Object-Models and other techniques such as Grammar-Oriented

Object Design, Meta-Tool Approaches or Re�ection at the Language Level, ad-

dress at least one of the two following problems:

� Capturing (business) rules for user modeling and/or building (Domain/ Busi-

ness) Speci�c Languages;

� Building systems that need to change requirements and re�ect those require-

ments as quickly as possible, i.e. runtime or dynamic adaptability.

The workshop focused on identifying, cataloging and comparing these tech-

niques one towards another. We looked at establishing some conclusions on the

conditions of use of these techniques, on where they meet or overlap, and hope-

fully on some cross-fertilization ideas of bene�t for each technique. What is

generally common to these techniques is that they actually implement or use

meta-modeling principles through OO languages capabilities.

Workshop position papers were presented that addressed one or more of the

following:

� Examples of the di�erent techniques;

� Concrete development reports with lessons learned;

� How can these techniques support one another;

� Prerequisites or needs for each technique;

� Pros and Cons of the di�erent techniques;

� Comparison of the di�erent techniques showing similarities and di�erences.

This paper is actually highlighting the submitted papers along with the result

of our �ndings that address the above mentioned points.

2 Workshop organization

The workshop was �rst organized around the history of the workshop, the build-

ing of a common vocabulary and context for the workshop, along with the ob-

jectives of the workshop. We then looked at some details for two of the sub�elds

of interest, followed by presentations from works in the sub�elds from submitted

papers2. We then broke into some groups for discussions and synthesized our

results to be presented at the end of this paper.

2.1 History of the workshop

From 1998 to 2000, AOM's have been discussed in various workshops [24, 23, 22,

25]. Metadata and Adaptive Object-Model workshops at the University of Illinois

in 1998 and at OOPSLA '98 and '99 were devoted to �pattern mining� some of

2 Available position papers from workshop participants [9, 12, 13, 21] can be found at

www.adaptiveobjectmodel.com/ECOOP2001.



3

these ideas. The workshop at ECOOP '00 was oriented toward a broader analysis

of the possible uses of the Adaptive Object-Model technology, based on the

examination of a range of examples. The discussions their led to establish some

�dimensions of abstraction in Adaptive Object-Models, Re�ection and OMG's

meta-modeling architecture�. Further along after these discussions, we came out

with a wider idea of comparison of the techniques of interest: meta-modeling

appearing to be the core feature of each technique, it has naturally been tackled

as the next stepping problem.

2.2 Context for the workshop

In order to �x a common vocabulary and settle the basis of the work for the

workshop day, we recalled � 1. what we mean while using the �meta� pre�x and

what main idea is behind it for us, and � 2. the various techniques that deal with

meta-modeling, de�ned in the workshop as the �sub�elds of interest�. We also

recalled the common problems we think these techniques intend to all address.

The main idea we have in mind while using the �meta� pre�x is related

to class-based object-oriented programming languages (OOPL). In these, we are

used to di�erentiate between the �instance level� and the �class level�. Brie�y, the

instance level is the one of runtime, where objects virtually exist in the computer

memory, as instances of their class. The class level is the one of programming

time, where classes are de�ned as �shapes� or �molds� for their future instances

with references to other classes and actually planning (programming) the way

objects will be created and will evolve at runtime. The operational link thus

de�ned between instances and their class, is the one we call the �meta� link.

This particularly makes sense when considering classes themselves as objects,

instances of other classes (usual in some OOPL, e.g. Smalltalk): classes of the

objects being classes are always called metaclasses.

The techniques dealing with meta-modeling we are interested in (as �sub�elds

of interest�) are those presented in the overview. Namely, Re�ection at the Lan-

guage Level, Grammar-Oriented Object Design, Adaptive Object-Models and

Meta-Tool Approaches (à la MetaEdit or à la MétaGen), each one applied in

some privileged areas. The main problems these techniques address are � Cap-

turing (business) rules for user modeling and/or building (Domain/Business)

Speci�c Languages and � Building systems that need to change requirements

and re�ect those requirements as quickly as possible, i.e. runtime or dynamic

adaptability.

2.3 More on the objectives of the workshop

In addition to the general objectives presented in the overview section (identi-

fying, cataloging and comparing techniques), some more speci�c objectives were

given as part of the introduction to the workshop. These were mainly related to

AOM's along with Meta-Tool Approaches.

A �rst idea was on the way of �going bottom up from� AOM's, in the sense

that they allow to de�ne operational domain (or business) speci�c languages.



4

One of the speci�c objectives here is to make clear, and hopefully systematic,

the way(s) this kind of languages can be supported by tools.

Another idea was on the way of �going top down from� Meta-Tool Ap-

proaches. Indeed, these generally o�er meta-modeling and generating environ-

ments, in the sense that they allow to build operational user-customized model

editors. One objective on that subject is to explicit the way(s) to get the oper-

ationality for models: how code generators can be systematically speci�ed and

what are the most suitable forms for them?

In addition, another objective concerning interaction between the two sets

of techniques was declared: �how to interact somewhere in the middle ?�. Issues

such as how the techniques might support one another while setting di�erences

and overlapping (if any) were actually asked.

Finally, setting the potential answer as another objective, we wondered on

how to integrate and locate the other techniques of interest, which have either

some similar goals or some similar means.

3 Summary of Contributions

The workshop brought together researchers and practitioners from a variety of

areas in order to explore the themes that underlie the various techniques of

interest.

A good sign that a technical area is ripening is that a number of people inde-

pendently discover or explore it. This would seem to be the case with AOM's and

meta-modeling. In the main, participants focused on comparisons between the

Adaptive Object-Model's approach and those of Re�ection and meta-modeling

through Meta-Tools. It emerged that indeed all three approaches share the same

levels of abstraction.

The following is a more detailed view of the main experiences/positions that

were presented for participation at the workshop.

3.1 Re�ection at the Language Level

Re�ection is one of the main techniques used to develop adaptable systems and,

currently, di�erent kinds of re�ective systems exist3. Compile-time re�ection sys-

tems provide the ability to customize their language but they are not adaptable

at runtime. On the other hand, runtime re�ection systems de�ne meta-object

protocols to customize the system semantics at runtime. However, these meta-

object protocols restrict the way a system may be adapted before its execution,

and they do not permit the customization of its language.

The system presented by Ortin et al. [12] implements a non-restrictive re�ec-

tion mechanism over a virtual machine, in which every feature may be adapted

at runtime. No meta-object protocol is used and, therefore, it is not needed

to specify previously what may be re�ected. With this re�ective system, the

programming language may be also customized at runtime.

3 This work was presented by F. Ortin, on the basis of his workshop submission [12]



5

3.2 Adaptive Object-Model Architecture

Today, users themselves often seek to dynamically change their business rules

without the writing of new code4. Customers require that systems are built that

can adapt more easily to changing business needs, that can meet their unique

requirements, and can scale to large and small installations.

On the other hand, the same technique is adequate for the slightly di�erent

purpose of producing a whole line of software products: of course, a line of

products may be obtained by variously instantiating a unique abstract model,

but also by adapting a given initial system to various requirements that appear

simultaneously instead of evolving in time. Moreover, the diversi�cation of a

successful product may also be seen as a form of reengineering.

Black-box frameworks provided early solutions for the design of �exible im-

plementation of business rules [17]. Recent research in the di�erent types of

architectures to meet such requirements from an object-oriented perspective has

been catalogued as Adaptive Object-Models [2, 3, 1, 7, 23]. An Adaptive Object-

Model is where the object representation of the domain under study has itself

an explicit object model (however partial) that is interpreted at runtime. Such

an object model can be changed with immediate (but controlled) e�ect on the

system interpreting and running it. Note that Adaptive Object-Models usually

requires a thorough analysis of the domain at hand, which may very well include

a black-box framework as an initial stage.

Objects have states and respond to events by changing state. The Adaptive

Object-Model de�nes the object model, i.e. the objects, their states, the events,

and the conditions under which an object changes state, in a way that allows

for dynamic modi�cation. If you change the object model, the system changes

its behavior. For example, such a feature makes it easy to integrate a work�ow

mechanism, which proves useful in many systems [10, 19].

Adaptive Object-Models successfully confront the need for change by casting

information like business rules as data rather than code. In this way, it is subject

to change at runtime. Using objects to model such data and coupling an inter-

pretation mechanism to that structure, we obtain a domain-speci�c language,

which allows users themselves to change the system following the evolution of

their business.

Metadata5 is then often used in adaptive object-models to describe the object

model itself. When runtime descriptions of these objects are available, users can

4 This work was presented by J. Yoder, on the basis of his workshop submission [21]
5 MetaData can be described by saying that if something is going to vary in a pre-

dictable way, store the description of the variation in a database so that it is easy to

change. In other words, if something is going to change a lot, make it easy to change.

The problem is that it can be hard to �gure out what changes, and even if you know

what changes then it can be hard to �gure out how to describe the change in your

database. Code is powerful, and it can be hard to make your data as powerful as

your code without making it as complicated as your code. But when you are able to

�gure out how to do it right, metadata can be incredibly powerful, and can decrease

your maintenance burden by an order of magnitude, or two. [R. Johnson]



6

directly manipulate these objects. Since the system can interpret the metadata to

build and manipulate these runtime descriptions, it is easy to add new objects

to the adaptive object-model, and make them immediately available to users.

This approach has been validated by several successful industrial projects (see

submissions to [24] and [25] along with [19, 14]).

Adaptive Object-Model architectures are usually made up of several patterns:

TypeObject [7] is used to separate an Entity from an EntityType, Entities have

Attributes, which are implemented with the Property pattern [3], and the Type-

Object pattern is used a second time to separate Attributes from AttributeTypes.

As is common in Entity-Relationship modeling, an Adaptive Object-Model usu-

ally separates attributes from relationships.

The Strategy pattern [4] is often used to de�ne the behavior of an EntityType.

These strategies can evolve to a more powerful rule-based language that gets

interpreted at runtime for representing changing behavior. Finally, there needs

to be support for reading and interpreting the data representing the business

rules that are stored in the database and there is usually an interface for non-

programmers to de�ne the new types of objects, attributes and behaviors needed

for the speci�ed domain.

Fig. 1. Type Square

Fig. 1 is a UML diagram of applying the TypeObject pattern twice with

the Property pattern and then adding Strategies/RuleObjects for representing

the behavior. We call this resulting architecture the TypeSquare pattern and it

is often seen in adaptable systems with knowledge levels as described in this

paper.

Metadata for describing the business rules and objects model is interpreted

in two places. The �rst is where the objects are constructed otherwise known as

instantiating the object-model. The second is during the runtime interpretation

of the business rules.

The information for describing the types of entities, properties, relationships,

and behaviors are stored in a database for runtime manipulation, thus allowing



7

for the business model to be updated and immediately re�ected in applications

interpreting the data.

Regardless of how the data is stored, it is necessary for the data to be inter-

preted to build up the adaptive object-model that represents the real business

model. If an object-oriented database is used, the types of objects and relation-

ships can be built up by simply instantiating the TypeObjects, Properties, and

RuleObjects. Otherwise, the metadata is read from the database for building

these objects, which are built using the Interpreter and Builder pattern.

The second place where the Interpreter pattern is applied is for the actual

behaviors associated with the business entities described in the system. Even-

tually after new types of objects are created with their respective attributes,

some meaningful operations will be applied to these objects. If these are simple

Strategies, some metadata might describe the method that needs to be invoked

along with the appropriate Strategy. These Strategies can be plugged into the

appropriate object during the instantiation of the types.

As more powerful business rules are needed, Strategies can evolve to become

more complex such that they are built up and interpreted at runtime. These can

be either primitive rules or the combination of business rules through application

of the Composite pattern. If the business rules are work�ow in nature, you can

use the Micro-Work�ow architecture as described by Manolescu [10]. Micro-

Work�ow describes classes that represent work�ow structure as a combination

of rules such as repetition, conditional, sequential, forking, and primitive rules.

These rules can be built up at runtime to represent a particular work�ow process.

Adaptive Object-Models are usually built from applying one or more of the

above patterns in conjunction with other design patterns such as Composite,

Interpreter, and Builder [4]. Composite is used for either building dynamic tree

structure types or rules. For example, if your entities need to be composed in

a dynamic tree like structure, the Composite pattern is applied. Builders and

Interpreters are commonly used for building the structures from the meta-model

or interpreting the results.

But, these are just patterns; they are not a framework for building Adaptive

Object-Models. Every Adaptive Object-Model is similar to a framework of a sort

but there is currently no generic framework for building them. A generic frame-

work for building the TypeObjects, Properties, and their respective relationships

could probably be built, but these are fairly easy to de�ne and the hard work

is generally associated with rules described by the business language. This is

something that is usually very domain-speci�c and varies quite a bit.

3.3 Meta-modeling through Meta-Tool Approaches

For about the last 10 years, meta-modeling environments have been developed,

sometimes originally for speci�c application areas (see e.g. [6, 18, 16, 5, 9])6. These

environments generally share two main features: � they allow explicit meta-

modeling, where meta-models and models are fully rei�ed at instance level, and

6 This work was presented by N. Revault, as an introduction to that sub�eld of interest



8

� they allow to derive (full or partial) application code from the models being

speci�ed in their editors.

In order to illustrate this kind of speci�cation tools, a particular tool has been

presented at the workshop: the MétaGen system [16]. This meta-tool has for

speci�city to address the problem of code generation by model transformation,

this process being itself expressed in the form of a (�rst-order logic) rule-based

system. And like other meta-tools, it allows model edition and modeling language

(meta-model) prototyping, by supporting dynamically model/meta-model artic-

ulation.

For being concrete, a simple but illustrative example has been used to show

the various components of the tool. The example is about a reduced data�ow

modeling language, where simple operators (standard arithmetic ones) might be

used in connection through �ows to constants or variables, for building models

of equations. Two models expressed in the language were given as examples of

equations: one with just a simple operation and two variables as input and one

as output (a � b = c, Fig. 2), the second with several operations, for representing

the way an amount of installments can be computed from an initial capital, a

rate and a number of installments (not shown here). Both of the models for

the corresponding equations were in turn automatically operationalized as a

Smalltalk application, with the necessary GUI built for giving arbitrary values

to the relative input variables.

Fig. 2. Example of a model operationalization, input and output



9

Each of the data�ow models has been used for explaining how the transfor-

mation process operates for �nally generating the application code. Actually, the

initial model is used as input of a �rst step in the transformation: it is trans-

formed into another model, representing the same �core� equation, but with some

more information, added in order to express the way to edit the equation ele-

ments, e.g. standard sliders for input variables, or simple text �elds for output

variables. The new model is expressed in another modeling language, �Appli�,

used for specifying the application more in details. It is actually an intermediate

that is in turn used as input of the second step in the generation: it is straight

fully interpreted for generating the Smalltalk code for implementing the equation

and allowing to edit its parameters.7

On the practical aspect, the transformation operates on objects reifying the

models. These objects are instances of classes that are called �model classes�. The

model classes are in fact the implementation of a meta-model for the modeling

language in use, the data�ow language or Appli in our example. The meta-models

are themselves rei�ed as objects in the environment (Fig. 3). They are speci�ed

as instances of constructs of the meta-modeling language of the tool: Pir3 in

MétaGen, which roughly allows to de�ne classes and set associations between

them [15].

Fig. 3. Example of meta-model speci�cation

7 Note that there might be several possible interpretations here, e.g. for generating

code towards another support language: it was shown for Java for instance.



10

What is particular to the MétaGen tool is that the transformation process is

preferably expressed with �rst-order logic (forward-chaining) rules. The rules are

expressed on the basis of the meta-models' elements: in our example, one of the

rules states for instance that a variable of a data�ow model without any input

�ow relation is to be treated such that the intermediate model must include a

slider connected to it, and thus that such a GUI component must be used for

graphically representing it in the �nal application. . . Of course, it is the execution

of the various rules that operates the automatic model transformation.

Finally, in order to illustrate adaptable model edition and actually dynamic

modeling language prototyping, an evolution of the representation for variable

intervals was presented: min, max and step values, initially treated within a

single blank-separated string, were restructured as a record or �struct� data type.

Naturally, it would be necessary to update the transformation rules for taking

that evolution in account in order to make the generation process consistent.

As a summary, Fig. 4 shows a schema for the whole implementation of the

example. It is actually an archetypal schema for a lot of the projects developed

with the MétaGen tool.

Fig. 4. Schema of the data�ow example implementation in MétaGen (MG)

3.4 Composable Meta-modeling Environment

Domain-Speci�c Design Environments (DSDE) capture speci�cations and auto-

matically generate or con�gure the target applications in particular engineering

�elds8. Well known examples include Matlab/Simulink for signal processing and

8 This work was presented by A. Ledeczi, on the basis of his workshop submission [9]



11

LabView for instrumentation, among others. The success of DSDEs in a wide

variety of applications in diverse �elds is well documented. Unfortunately, the

development of a typical DSDE is very expensive. To solve this problem, Ledeczi

et al. advocate the idea of a Con�gurable Domain-Speci�c Development Envi-

ronment (CDSDE) that is con�gurable to a wide range of domains. The Generic

Modeling Environment (GME 2000) is a con�gurable toolkit for creating domain-

speci�c design environments. The con�guration is accomplished through meta-

models specifying the modeling paradigm (modeling language) of the application

domain. GME 2000 follows the standard four-layer metamodeling architecture

applied in the speci�cation of CDIF and UML. It is thus representing another

particular Meta-Tool Approach.

The metamodeling language in GME 2000 is based on the UML class di-

agram notation including OCL constraints. Just as the reusability of domain

models from application to application is essential, the reusability of metamod-

els from domain to domain is also important. Ideally, a library of metamodels

of important sub-domains should be made available to the metamodeler, who

can extend and compose them together to specify domain languages. These sub-

domains might include di�erent variations of signal-�ow, �nite state machines,

data type speci�cations, fault propagation graphs, petri-nets, etc. The extension

and composition mechanisms must not modify the original metamodels, just as

subclasses do not modify base classes in OO programming. Then changes in

the metamodel libraries, re�ecting a better understanding of the given domain,

for example, can propagate automatically to the metamodels that utilize them.

Furthermore, by precisely specifying the extension and composition rules, mod-

els speci�ed in the original domain language can be automatically translated to

comply with the new, extended and composed, modeling language.

To support metamodel composition, some new UML operators are necessary.

The equivalence operator is used to represent the union of two UML class objects.

The two classes cease to be separate entities, but form a single class instead.

Thus, the union includes all attributes, compositions and associations of each

individual class. Equivalence can be thought of as de�ning the �join points� or

�composition points� of two or more source metamodels.

New operators were also introduced to provide �ner control over inheritance.

When the new class needs to be able to play the role of the base class, but its

internals need not be inherited, interface inheritance is used. In this case, all

associations and those compositions where the base class plays the role of the

contained object are inherited. On the other hand, when only the internals of a

class are needed by a subclass, implementation inheritance is used. In this case,

all the attributes and those compositions where the base class plays the role of

the container are inherited. Notice that the union of these two new inheritance

operators is the �regular� UML inheritance.

It is important to observe that the use the equivalence and new inheritance

operators are just a notational convenience, and in no way change the underlying

semantics of UML. In fact, every diagram using the new operators has an equiv-

alent �pure� UML representation, and as such, each composed metamodel could



12

be represented without the new operators. However, such metamodels would ei-

ther need to modify the original metamodels or require the manual repetition

of information in them due to the lack of �ne control over inheritance. These

metamodels would also be signi�cantly more cluttered, making the diagrams

more di�cult to read and understand.

4 Workshop results

Following the workshop, we came to several conclusions on various themes. Here-

after, we present the main ones:

� on comparing techniques of Re�ection at the Language Level and AOM

techniques, the former being seen as a more transversal case of the latter (or

the later as a more application speci�c case);

� on paralleling the relationship between AOM's de�nition/utilization and

meta-model/model of Meta-Tool Approaches to the relationship between

interpreted and compiled expressions in programming languages; and �nally

� on discussing about abstraction levels, in reference to the standard OMG

4-layers architecture.

Considering the ins and outs of activities using Re�ection at the Language

Level (RaLL) on the one hand (e.g. [12] and also its references), and those

of AOM based developments on the other hand (see references of [21]), some

commonalities appear between the two sets of works. In particular, in both

kinds of works a main concern is put on the property of (dynamic) adaptability,

where a developed system is supposed to automatically adjust (at runtime) to

new speci�cations of its users. Moreover, for achieving the above property, both

sets of works lead to de�ne and develop some kind of an interpreter for runtime

adaptation: the one speci�ed by a Meta-Object Protocol (MOP) in the �rst case

[8], and a more application speci�c one in the second case (e.g. for the developed

health system for the Illinois Department of Public Health [20]).

For these reasons, and because of the di�erences we explain just below, we

might see RaLL techniques as some more general or transversal cases of AOM

techniques, or a contrario, AOM techniques as more speci�c cases of RaLL tech-

niques.

The main di�erences between the techniques are concerning their scope wide-

ness, their application domains, and also their applicability. Indeed, RaLL tech-

niques are de�nitely more powerful in scope that AOM techniques, in the sense

they are mainly developed for general programming languages design, whereas

AOM's are more restricted for them being developed for particular application

domains. Another di�erence is about complexity and applicability: RaLL tech-

niques are actually complex and not easy to manage and apply in business

oriented developments, precisely for their wideness of scope, whereas AOM's, as

o�set by their restriction to particular application domains, reduce complexity

and increase applicability in business.



13

For observing both the techniques for AOM based developments and for

projects where Meta-Tool Approaches have been used, we came also to par-

allel their relationship to that which exists between interpreted expressions in

programming languages and compiled expressions.

Indeed, both techniques essentially share a common objective: de�ning a

business-speci�c language for �operational business modeling� (see details for

each technique in the relative sections of this document). On the other hand, the

means used by each technique for that purpose are quite di�erent: � in the case

of AOM's, the language is in some sense �pulled up� from the implementation

of an interpreter and in that way driven by the (operational) semantics; � in

the case of Meta-Tool Approaches, the language is speci�ed by a meta-model

and in the some sense �pushed down� from it whereas its semantics is �xed by a

third-party artifact, a model transformer and/or code generator, which can be

viewed as an actual model compiler.

Finally, we can �nd the same kind of di�erences between AOM's (a) and

Meta-Tool Approaches (b) than between interpreted expressions (a') and com-

piled expressions (b') in programming languages:

� the speci�cations (models or expressions) and their usage are more interac-

tive in case of (a) and (a'), whereas there is a more static usage in case of

(b) and (b');
� some direct executions might be obtained for (a) and (a') whereas they are

delayed by de�nition for (b) and (b').

Of course, this parallel is to be treated with caution because of the scale of

speci�cation which is much larger in the case of the techniques we are interested

in - (a) and (b) - than in the case of (a') and (b'), and also because of their

modeling orientation and business concern.

As we also had some points on the various levels of abstraction needed for

each technique, here is a summary of what appeared to some of us. First, we

made the assessment that on a -precise- operational point of view (while using

class-instance based OOPL), there are only two levels of abstractions: roughly,

the two levels cover the class level and the instance level, as introduced in the

context section of this document (while talking about the �meta� pre�x). Pro-

gramming is what occurs at the �rst level, which is the de�nition level, where

classes are speci�ed, and runtime is about the second level, the execution level,

where instances are actually �activated� (at least as the current context for execu-

tion). Then, especially while dealing with meta-programming or meta-modeling,

we need to settle a conceptual framework where more levels are available in order

to isolate things well.

That's is why the OMG's 4-layers architecture is certainly justi�ed and why

we might like to conform to it [11]. However, we must keep in mind that when

implementing such a conceptual framework or part of it, the various conceptual

levels of abstractions are �nally all projected onto the two operational levels of

classes and instances.

Finally, we think it might also be useful to have in mind that on top of

the standard 4-layer architecture, whatever its implementation is, each layer is



14

actually aggregating a dual representation: indeed, on the one hand a model (or

expression) at one level is being composed of instances of the classes of the level

above, and on the other hand, it is also de�ning classes for the level below. For

example, a meta-model (resp. a model) is built of instances of a meta-modeling

language (resp. a modeling language), whereas it describes itself classes of a

modeling language (resp. an object model or class diagram).

There are an in�nite number of modeling languages. A metamodeling lan-

guage is just another modeling language. A metamodel speci�es one speci�c

modeling language. If that speci�c modeling language is the metamodeling lan-

guage, then its metamodel is called the meta-metamodel. In that sense, it is often

the case that the fourth layer is not needed; the third layer (the metamodeling

layer) is the top layer and it can describe itself.

5 Conclusions

A dominant theme was that the need to confront change is forcing system ar-

chitects to �nd ways to allow their systems and users to more e�ectively keep

pace with these changes. A way to do this is to cast information like business

rules as data rather than code, so that it is subject to change at runtime. When

such data are re�ected as objects, these objects can, in time, come to constitute

a domain-speci�c language, which allows users themselves to change the system

as business needs dictate.

A major accomplishment of this workshop was to �nally get this disparate

group together, and to establish this dialog. However, we've only begun the

task of �eshing out these architectural issues, uncovering the patterns, and of

better de�ning our vocabulary. It was noted that principles of Re�ection and

Meta-Modeling could be used to better support the goals of AOM's and vice-

versa. We are looking forward to reconvening the members of this community to

continue this work. The focus of the next meeting will be around on seeing where

these communities meet and how they can support one another for achieving the

goal of building dynamically adaptable systems.

References

1. Francis Anderson. A Collection of History Patterns. In Collected papers from the

PLoP '98 and EuroPLoP '98 Conference, Technical Report #wucs-98-25. Dept. of

Computer Science, Washington University, 1998.

2. Brian Foote and Joseph Yoder. Architecture, Evolution, and Metamorphosis. In

J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors, Pattern Languages of

Program Design 2. Addison-Wesley, Reading, MA., 1996.

3. Brian Foote and Joseph Yoder. Metadata and Active Object-Models. In Collected

papers from the PLoP '98 and EuroPLoP '98 Conference, Technical Report #wucs-

98-25. Dept. of Computer Science, Washington University, 1998.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.



15

5. W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A.

Musen. Knowledge Modeling at the Millennium (The Design and Evolution of

Protege-2000). Internal report SMI-1999-0801, Stanford Medical Informatics, 1999.

6. P. Jeulin, M. Khlat, and L. Wilhem. GRAPHTALK, GQL et GKNOWLEDGE:

Des techniques d'Intelligence Arti�cielle au service d'un environnement de Génie

Logiciel. Technical report, Rank Rerox France, 1989.

7. R. E. Johnson and B. Woolf. Type Object. In R. Martin, D. Riehle, and

F. Buschmann, editors, Pattern Languages of Program Design 3. Addison-Wesley,

Reading, MA., 1998.

8. Kiczales, Riviers, and Bborow. The art of the MOP. MIT Press, Cambridge, MA,

1991.

9. Akos Ledeczi, Peter Volgyesi, and Gabor Karsai. Metamodel Composition in the

Generic Modeling Environment. Comm. at workshop on Adaptive Object-Models

and Metamodeling Techniques, Ecoop'01, Budapest, Hungary, 2001.

10. D. Manolescu. Micro-Work�ow: A Work�ow Architecture Supporting Composi-

tional Object-Oriented Software Development. PhD thesis, Computer Science Tech-

nical Report UIUCDCS-R-2000-2186, University of Illinois at Urbana-Champaign,

Urbana, IL, October 2000.

11. OMG. Meta-Object Facility (MOF) Speci�cation v.1.3. TC Document ad/99-09-

05, OMG, 1999.

12. Francisco Ortín-Soler and Juan Manuel Cueva-Lovelle. Building a Completely

Adaptable Re�ective System. Comm. at workshop on Adaptive Object-Models

and Metamodeling Techniques, Ecoop'01, Budapest, Hungary, June (18) 2001.

13. John D. Poole. Model-Driven Architecture: Vision, Standards And Emerging Tech-

nologies. Comm. at workshop on Adaptive Object-Models and Metamodeling Tech-

niques, Ecoop'01, Budapest, Hungary, 2001.

14. Reza Razavi. Active Object-Models et Lignes de Produits. In OCM'2000, Nantes,

France, May 2000. www-poleia.lip6.fr/�razavi.

15. N. Revault, X. Blanc, and J-F. Perrot. On Meta-Modeling Formalisms and Rule-

Based Model Transforms. Comm. at workshop Iwme'00, Ecoop'00, Sophia Antipo-

lis & Cannes, France, 2000.

16. N. Revault, H.A. Sahraoui, G. Blain, and J.-F. Perrot. A Metamodeling technique:

The MétaGen system. In Tools 16: Tools Europe'95, pages 127�139, Versailles,

France, 1995. Prentice Hall. Also RR LAFORIA95/01.

17. D. Roberts and R. Johnson. Evolving Frameworks: A Pattern Language for Devel-

oping Object-Oriented Frameworks. In R. Martin, D. Riehle, and F. Buschmann,

editors, Pattern Languages of Program Design 3. Addison-Wesley, Reading, MA.,

1997.

18. K. Smolander, P. Marttiin, K. Lyytinen, and V. Tahvanainen. MetaEdit - a �exible

graphical environment for methodology modelling. In Caise'91, pages 168�193,

Trondheim, Norway, 1991. Springer Verlag, Berlin.

19. M. Tilman and M. Devos. A Re�ective and Repository Based Framework. In

Implementing Application Frameworks, pages 29�64. Wiley, 1999.

20. J. W. Yoder, F. Balaguer, and R. E. Johnson. Architecture and Design of Adap-

tive Object-Models. In Proceedings of the 2001 Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA '01). ACM Press,

2001.

21. J. W. Yoder, F. Balaguer, and R. E. Johnson. The Architectural Style of Adaptive

Object-Models. Comm. at workshop on Adaptive Object-Models and Metamodel-

ing Techniques, Ecoop'01, Budapest, Hungary, June (18) 2001.



16

22. J. W. Yoder, B. Foote, D. Riehle, M. Fowler, and M. Tilman. Metadata and Active

Object-Models. Workshop report, www.adaptiveobjectmodel.com/OOPSLA99,

OOPSLA'99, 1999.

23. J. W. Yoder, B. Foote, D. Riehle, and M. Tilman. Metadata and Active Object-

Models Workshop. In OOPSLA '98 Addendum. ACM Press, 1998.

24. J. W. Yoder and R. E. Johnson. MetaData Pattern Mining. Workshop re-

port, www.joeyoder.com/Research/metadata/UoI98MetadataWkshop.html, Uni-

versity of Illinois at Urbana-Champaign, Urbana, IL, May 1998.

25. J. W. Yoder and R. Razavi. Metadata and Active Object-Model pattern mining.

In Ecoop'00 workshop reader. Springer-Verlag, 2000.

Workshop participants

Our workshop gathered researchers from Adaptive Object-Modeling with others

from Meta-Tool Approaches and Re�ection. Table 1 below shows the list of all

participants to our workshop:

surname �rst company email

Alvarez Dario University of Oviedo darioa@pinon.ccu.uniovi.es

Gabor Andras University of Debrecen gabora@dragon.klte.hu

Gerhardt Frank fg@acm.org

Jonas Richard University of Debrecen jonasr@math.klte.hu

Kollar Layar University of Debrecen kollarl@math.klte.hu

Ledeczi Akos Vanderbilt University akos@isis.vanderbilt.edu

Madacas Bodnar IQSoft bodnari@iqsoft.hu

Oliver Ian Nokia Research Center ian.oliver@nokia.com

Ortín Francisco University of Oviedo ortin@pinon.ccu.uniovi.es

Revault Nicolas Univ. Cergy-Pontoise - LIP6 Nicolas.Revault@lip6.fr

Vereb Kriantian University of Debrecen sparrow@math.klte.hu

Yoder Joseph The Refactory yoder@refactory.com

Table 1. Workshop participants



Author Index

Revault, Nicolas 1 Yoder, Joseph W. 1


