
1

The Adaptive Object-Model Architectural Style

Joseph W. Yoder & Ralph Johnson
yoder@refactory.com & johnson@cs.uiuc.edu
The Refactory, Inc. and
Software Architecture Group –
Department of Computer Science
Univ. Of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract: We have noticed a common architecture in many systems that emphasize
flexibility and run-time configuration. In these systems, business rules are
stored externally to the program such as in a database or XML files. The
object model that the user cares about is part of the database, and the object
model of the code is just an interpreter of the users’ object model. We call
these systems “Adaptive Object-Models”, because the users’ object model is
interpreted at runtime and can be changed with immediate (but controlled)
effects on the system interpreting it. The real power in Adaptive Object-
Models is that the definition of a domain model and rules for its integrity can
be configured by domain experts external to the execution of the program.
These systems are important when flexibility and dynamic runtime
configuration is needed, but their architectures have yet to be described in
detail. This paper describes the Adaptive Object-Model architecture style
along with its strengths and weaknesses. It illustrates the Adaptive Object-
Model architectural style by outlining examples of production systems.

Key words: Adaptive Object-Model, Adaptive Systems, Analysis and Design Patterns,
Domain-Specific Language, Architectural Styles, Components, Dynamic
Object-Model, Frameworks, Meta-Modeling, Meta-Architectures, Metadata,
Metalevel, Reflection, Reflective Systems.

1. INTRODUCTION

Architectures that are designed to adapt at runtime to new user
requirement by retrieving descriptive information that can be interpreted at
runtime are sometimes called a "reflective architecture" or a "meta-
architecture". This paper focuses on a particular kind of reflective



2 Joseph W. Yoder & Ralph Johnson

architecture that we call "Adaptive Object-Model (AOM) architecture".
Most of the systems we have seen with an Adaptive Object-Model are
business systems that manage products of some sort and are extended to add
new products with the appropriate business rules. It has been called "User
Defined Product architecture" in the past [12]. These systems have also
been called “Active Object-Models” [6, 20] and “Dynamic Object Models”
[16]

An Adaptive Object-Model is a system that represents classes, attributes,
relationships, and behavior as metadata. The system is a model based on
instances rather than classes. Users change the metadata (object model) to
reflect changes in the domain. These changes modify the system’s behavior.
In other word, the system stores its Object-Model in a database and interprets
it. Consequently, the object model is adaptable; when the descriptive
information is modified, the system immediately reflects those changes
similar to a UML Virtual Machine described by Riehle et. al [17].

Many architects who have designed a system with Adaptive Object-
Models claim that it is the best system they have ever created, and they brag
about its flexibility, power, and eloquence. At the same time, many
developers find them confusing and hard to work with. This is partly
because an Adaptive Object-Model has several levels of abstraction, so there
are several places that could be changed. The most common way to change
the system is by changing the metadata, but sometimes a change is
implemented by changing the interpreter of the metadata. Most
programmers don’t have any experience with systems like this. We hope
that a clear description of the Adaptive Object-Model will help developers
who have to use one. The Adaptive Object-Model architectural style has not
been well described, and most of the architects that use it don’t realize how
widely it is used.

This paper describes the Adaptive Object-Models architectural style and
the consequences of using it. It also describes four different
implementations of Adaptive Object-Models that have been used for
building production systems.

2. ARCHITECTURUAL STYLE OF AOMS

The design of Adaptive Object-Models differs from most object-oriented
designs. Normally, object-oriented design would have classes for describing
the different types of business entities and associates attributes and methods
with them. The classes model the business, so a change in the business
causes a change to the code, which leads to a new version of the application.
An Adaptive Object-Model does not model these business entities as classes.



The Adaptive Object-Model Architectural Style 3

Rather, they are modeled by descriptions (metadata) that are interpreted at
run-time. Thus, whenever a business change is needed, these descriptions
are changed which are then immediately reflected in the running application.

Adaptive Object-Model architectures are usually made up of several
smaller patterns. TypeObject [11] provides a way to dynamically define
new business entities for the system. TypeObject is used to separate an
Entity from an EntityType. Entities have Attributes, which are implemented
with the Property pattern [6]. The TypeObject pattern is used a second
time in order to define the legal types of Attributes, called AttributeTypes.
As is common in Entity-Relationship modeling, an Adaptive Object-Model
usually separates attributes from relationships.

The Strategy pattern [8] is used to define the behavior of EntityTypes.
These strategies can evolve into a rule-based language that gets interpreted at
runtime. Finally, there is usually an interface for non-programmers to define
the new types of objects, attributes and behaviors needed for the specified
domain.

• TypeObject
Most object-oriented languages structure a program as a set of classes. A

class defines the structure and behavior of objects. Object-oriented systems
generally use a separate class for each kind of object, so introducing a new
kind of object requires making a new class, which requires programming.
However, developers of large systems usually face the problem of having a
class from which they should create an unknown number of subclasses [11].

Car

Caravan Camry Explorer...

Car

+someOperations()
-specificAttribues : type

CarType

+typeOperations()
-sharedAttributes : type0..n

Before

After

Figure 1. TypeObject

Each subclass is an abstraction of an element of the changing domain.
TypeObject makes the unknown subclasses simple instances of a generic
class (see



4 Joseph W. Yoder & Ralph Johnson

The Adaptive Object-Model Architectural Style 25
); new classes can be created at run-time by instantiating the generic

class. Objects created from the traditional hierarchy can still be created but
making explicit the relationship between them and their type.

The Adaptive Object-Model Architectural Style 25
shows an example of how a Car class with a set of subclasses such as

Caravan, Camry, and Explorer is transformed into a pair of classes, Car and
CarType. These transformed classes represent the class model of the
interpreter and are used at runtime to represent the Entities and EntityTypes
for the system. Replacing a hierarchy like this is possible when the behavior
between the subclasses is very similar or can be broken out into separate
objects. In these cases, the primary differences between the subclasses are
the values of their attributes.

• Property
The attributes of an object are usually implemented by its instance

variables. These variables are usually defined in each subclass. If objects of
different types are all the same class, how can their attributes vary? The
solution is to implement attributes differently. Instead of each attribute
being a different instance variable, make an instance variable that holds a
collection of attributes (Figure 2). This can be done using a dictionary,
vector, or lookup table. In our example, the Property holds onto the name of
the attribute, its type, and its current value.

Car

- color : String = Any
- modelNumber : String = Any
- ….

Car
Property

-name : String = color
-type : String = String
-value : String = Any

0..n

attributes

Before After

Figure 2. Properties

In most Adaptive Object Models, TypeObject is used twice, once before
using the Property pattern, and once afteSAr it. TypeObject divides the
system into Entities and EntityTypes. Entities have attributes that can be
defined using Properties. Each property has a type, called PropertyType,
and each EntityType can then specify the types of the properties for its
entities. Figure3 represents the resulting architecture after applying these
two patterns, which we call TypeSquare [22]. It often keeps track of the
name of the property, and also whether the value of the property is a number,
a date, a string, etc. The result is an object model similar to the following:
Sometimes objects differ only in having different properties. For example, a
system that just reads and writes a database can use a Record with a set of



The Adaptive Object-Model Architectural Style 5

Properties to represent a single record, and can use RecordType and
PropertyType to represent a table.

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..nroperties

0..n type

0..n properties

Figure 3. TypeSquare

Different kinds of objects usually have different kinds of relationships
and behaviors. For example, maybe records need to be checked for
consistency before being written to a database. Although many tables will
have a simple consistency check, such as ensuring that numbers are within a
certain range, a few will have a complex consistency checking algorithm.
Thus, Property isn’t enough to eliminate the need for subclasses. An
Adaptive Object-Model needs a way to describe and change the relationships
and behavior of objects.

• Entity-Relationship
Attributes are properties that refer to primitive data types like numbers,

strings, or colors. Entities usually have a one-way association with their
respective attributes. Relationships are properties that refer to other entities.
Relationships are usually two-way associations; if Gene is the father of Carol
then Carol is the daughter of Gene. This distinction, which has long been a
part of classic entity-relationship modeling and which has been carried over
into modern object-oriented modeling notations, is usually a part of an
Adaptive Object-Model architecture. The distinction often leads to two
subclasses of properties, one for attributes and one for relationships.

One way to separate attributes from associations is to use the Property
pattern twice, once for attributes and once for associations. Another way is
to make two subclasses of Property, Attribute and Association. An
Association (called Accountability (see Figure 4) by Fowler and Hayes [7,
10]) would know its cardinality. A third way to separate attributes from
associations is by the value of the Property. Suppose there is a class Value
whose subclasses are all immutable. Typical values would be numbers,
strings, quantities (numbers with units), and colors. A Property whose value



6 Joseph W. Yoder & Ralph Johnson

is an Entity represents an Association, while Properties whose value is a
primitive data type are Attributes.

Accountability Party

Accountability Type Party Type

0..n

1..nresponsible

0..n

1..ncommissioner

1..n

0..n

type

0..n

1..ntype
0..n

1..nlegal responsible

0..n

1..nlegal commissionersupertype supertype

Figure 4. Accountability Pattern

• Strategies and RuleObjects
Business rules for object-oriented systems can be represented in many

ways. Some rules will define the types of entities in a system along with
their attributes. Other rules may define legal subtypes, which is usually done
through subclassing. Other rules will define the legal types of relationships
between entities. These rules can also define basic constraints such as the
cardinality of relationships and if a certain attribute is required or not. Most
of these types of rules deal with the basic structure and have been previously
discussed on how Adaptive Object-Models deal with adapting these as
runtime.

However, some rules cannot be defined this way. They are more
functional or procedural in nature. For example, there can be a rule that
describes the legal types of values that an attribute can have. Or, there may
be a rule that states that certain entity-relationships are only legal if the
entities have certain values and other constraints are met. These business
rules become more complex in nature and Adaptive Object-Models use
Strategies and RuleObjects [2] to handle them.

Adaptive Object-Models often start with some simple Strategies that are
the basic functions needed for the new EntityTypes. These Strategies can
be mapped to the EntityType through descriptive information that is
interpreted at runtime. A Strategy is an object that represents an algorithm.
The Strategy pattern defines a standard interface for a family of algorithms
so that clients can work with any of them. If an object’s behavior is defined
by one or more strategies then that behavior is easy to change.



The Adaptive Object-Model Architectural Style 7

Each application of the Strategy pattern leads to a different interface,
and thus to a different class hierarchy of Strategies. In a database system,
strategies might be associated with each property and used to validate them.
The Strategies would then have one public operation, validate. But
Strategies are more often associated with the fundamental entities being
modeled, where they implement the operations on the methods.

However, as more powerful business rules are needed, these Strategies
can evolve to become more complex. These can be either primitive rules or
the combination of business rules through application of the Composite
pattern. Rules that represent predicates are composed of conjunctions and
disjunctions, rules that represent numerical values are composed by addition
and subtraction rules, rules that represent sets are composed by union and
intersection rules. These more complex Strategies are called RuleObjects.

Figure 5 is a UML diagram created by applying the TypeObject pattern
twice with the Property pattern and then adding Strategies (Rules) for
representing the behavior. This resulting architecture is often seen in
adaptable systems.

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

Rule

PrimRule CompositeRule

rule0..n type

0..nproperties

0..n type

0..n properties

0..n

Figure 5. TypeSquare with Rules

If the business rules describe workflow, Micro-Workflow architecture as
described by Manolescu [13] can be used. Micro-Workflow describes
classes that represent workflow structure as a combination of rules such as
repetition, conditional, sequential, forking, and primitive rules. These rules
can be built up at runtime to represent a particular workflow process. These
rules can also be built up from table-driven systems or they may be more
grammar-oriented. This grammar-oriented approach has been called
Grammar-oriented Object design (GOOD) [3].

• Interpreters of the Metadata
Metadata for describing the business rules and object model is interpreted

in two places. The first is where the objects are constructed, i.e when the
object-model is instantiated. The second is during the interpretation of the
business rules at runtime.



8 Joseph W. Yoder & Ralph Johnson

The information about the types of entities, properties, relationships, and
behaviors is stored in a database. Sometimes it is stored in XML files and
we can use XDT building tools for runtime manipulation, thus allowing the
model to be updated and immediately reflected in applications interpreting
the data.

Regardless of how the data is stored, it must be interpreted to build up the
adaptive object-model that represents the real business model. If an object-
oriented database is used, the types of objects and relationships can be built
up by simply instantiating the TypeObjects, Properties, and RuleObjects.
Otherwise, the metadata is read from the database for building these objects,
which are built using the Interpreter and Builder pattern.

The second place where the Interpreter pattern is applied is for the actual
behaviors associated with the business entities described in the system.
Eventually after new types of objects are created with their respective
attributes, some meaningful operations will be applied to these objects. If
these are simple Strategies, some metadata might describe the method that
needs to be invoked along with the appropriate Strategy. These Strategies
can be plugged into the appropriate object during the instantiation of the
types.

However, if more dynamic rules are needed, a domain specific language
can be designed using rules-objects. For example, primitive rules can be
defined and composed together with logical objects that form a tree structure
that is interpreted at runtime. This is exactly how the business rules are
described in Manolescu’s Micro-Workflow architecture.

When dealing with functions, there needs to be ways for dealing with
constants and variables, along with constraints between values.
SmartVariables [6] can be useful for triggering automatic updates or
validations when setting property values. SmartVariables are variables that
trigger events when their values are referenced or changed.

Table lookup is often used for dealing with constants or keeping track of
variables. Sometimes, no matter how hard you try, the needs of the system
become so complicated that the only solution is to create a rule language
using grammars, abstract syntax trees, constraint languages, and complex
interpreters. The important thing to remember is to only evolve the language
as the need dictates. The temptation can overtake a developer to create a
new language that actually will make the maintenance and evolution of the
application more difficult than if these rules were simply modeled in the
base programming language.

Rules and grammars require skill to write and maintain. But if intuitive
(and following normal precedence rules that humans are used to) they can be
easy for “end users” to write; at least easier than having them write a subset
of a programming language. Also, special tools and visual languages can be



The Adaptive Object-Model Architectural Style 9

built to support “end users” to maintain the business rules in a fashion they
are familiar with.

• Architecture of Adaptive Object-Models
Adaptive Object-Models are usually built from applying one or more of

the above patterns in conjunction with other design patterns such as
Composite, Interpreter, and Builder. Composite [8] is used for building
dynamic tree structure types or rules. For example, if the entities need to be
composed in a dynamic tree like structure, the Composite pattern is applied.
Builders and Interpreters are commonly used for building the structures
from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for building
Adaptive Object-Models. Every Adaptive Object-Model is a framework of a
sort but there is currently no generic framework for building them. A
generic framework for building the TypeObjects, Properties, and their
respective relationships could probably be built, but these are fairly easy to
define and the hard work is generally associated with rules described by the
business language. This is something that is usually very domain-specific
and varies quite a bit.

3. EXAMPLES OF ADAPTIVE OBJECT-MODELS

We have examined many different systems that have an Adaptive Object-
Model. A workshop sponsored by Caterpillar and The University of Illinois
in 1998 reviewed three production frameworks that will be discussed in this
paper; The Hartford’s User-Defined Product Framework, Argo’s Document
Workflow Framework, and Objectiva’s Telephony Billing System. We will
also describe one that we have built and put in production for the Illinois
Department of Public Health (IDPH) that is based on the Party,
Accountability, and Observation pattern [7].

• User-Defined Product Framework
The User-Defined Product (UDP) framework is an example of an

Adaptive Object-Model, which was developed at The Hartford, where it was
used to represent insurance policies [12]. The UDP framework is a generic
framework for "attributed composite objects". This framework makes it
easy to specify, represent, and manipulate complex objects with attributes
that are a function of their components. For example, an insurance policy
has a price, which depends on whether it is home insurance or car insurance,
the value of the home or car, the location of the home or car, the size of
deductibles, and various options such as flood insurance. A bicycle
manufacturer needs to describe all the models it sells, and each model has a



10 Joseph W. Yoder & Ralph Johnson

price that is a function of the parts and options that are on it, which state the
bicycle was purchased in and whether the customer is buying at retail or
wholesale. Either of these systems could be built using the framework.

The UDP framework allowed users to construct a complex business
object (like a new policy or a new model of bicycle) from existing
components and to let users define a new kind of component without
programming. Thus, insurance managers can invent a new policy rider and
an engineer at a bicycle manufacturer can invent a new add-on like a cellular
phone for a bike, and neither one of them needs a programmer. Salespeople
can then use these new components to specify a policy or bicycle for an
order. The framework automates the computation of attributes such as price.
Moreover, it keeps track of how an object changes over time, so that you
know how deductions were changed on an insurance policy, and how the
price of a bike changed.

The primary architecture of the UDP framework can be seen in Figure 6
(put into UML format and modified up for this paper). Note that this is very
similar to the Adaptive Object-Model architecture as described in the
previous section. New insurance policies or new bicycle models can be
described by creating new instances of the ComponentTypes. These can in
turn define what their legal AttributesTypes. We have applied the Strategy
pattern on ComponentTypes and AttributeTypes in order to define the legal
rules (behaviors) that are associated with them. These rules can become
very dynamic in nature and can be composed together. They can consist of
binary operations, table-lookup, or simple constraints.

Component

+valueUsing:()

Attribute

ComponentType

+name
+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

1

-children*-children *

1

-attributes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Figure 6. UDP Framework Architecture



The Adaptive Object-Model Architectural Style 11

• Argo Document Workflow Framework
This Argo framework was developed to support the Argo administration

in Belgium. Argo is a semi-government organization managing several
hundred public schools. It uses this framework to develop its applications,
which share a common business model, and require database, electronic
document, workflow and Internet functionality.

The framework is based on a repository in two ways. First, it consists of a
set of tools for managing a repository of documents, data and processes,
including their history and status. These tools enable users to select
applications, enter and view data, query the repository, access the thesaurus
and manage electronic documents, workflow processes, and task
assignments. More importantly, the framework behavior is driven by the
metadata stored in the repository. The repository captures formal and
informal knowledge of the business model. None of the business model is
hard coded. The tools consult the repository at runtime. End-users can
change the behavior of the system by using high-level tools to change the
business model. Thus we separate descriptions of an organization's business
logic from the application functionality.

The framework helps to develop applications iterative and interactively.
It enables the evolution of increasingly complete specifications of
applications that can be executed at once. The resulting system is easy to
adapt to changes in the business. Argo can develop new applications through
modeling and configuration, rather than through coding.

The primary architecture of the framework is based upon a meta-layer
where there is support for defining new types of objects, with their attributes
and behaviors (see Figure 7). This architecture is very powerful as the meta-
level was pushed to the limit for defining new types of objects with their
respective behaviors.

The design of the system involves a MetaObject class, which has two
subclasses of Type and Property. Types can have zero or more Properties.
There are subclasses of Type, which are AttributeType, ObjectType, and
AssociationType. And, there are subclasses of Property, which are
DerivedProperty and DescriptiveProperty that in turn have subclasses of
CalculatedProperty, VirtualProperty, AssociationProperty, and
AttributeProperty. There are also Constraints between the Properties and
Types.



12 Joseph W. Yoder & Ralph Johnson

Figure 7. Argos Meta-Architecture

The rules are defined by a more dynamic type of Strategy that allow for
ScriptRules, SystemEvents, and Constraints to be configured together and
associated with different types of objects and attributes (see Figure 8).
These are more closely related to RuleObjects rather than Strategy as they
define a set of scripting rules and events for defining the specific rules for
each ObjectType.

Figure 8. Argos Business Rules



The Adaptive Object-Model Architectural Style 13

• Objectiva’s Telephony Billing System
Objectiva is a black-box framework for telecommunications billing. This

system allows developers to build applications primarily by reusing existing
classes and does not force them to create new ones. Objectiva makes it
possible to quickly produce billing systems for all kinds of telecom services,
including cellular, PCS, local number portability, conventional local and
long distance, and satellite services. It also makes it possible to quickly
customize an existing system to respond to changing conditions and to
provide new services. It is a “convergent billing” system that makes it
possible for a single billing system to handle any kind of
telecommunications service.

A billing system has many parts, some technical in nature, and some that
solely implement the business rules of billing. The purpose of the Objectiva
architecture is to organize the parts of the system as effectively as possible in
order to maximize their reuse. In Objectiva, as in Smalltalk, everything is an
object, with all the jargon that one expects in order to be fully object-
oriented: inheritance, encapsulation, polymorphism, responsibilities,
collaboration, etc.

Objectiva keeps track of a company’s customers. This includes their
addresses and other contact information, the agreements that each customer
has with the Enterprise (which can change frequently), the network events
that cause a charge (like a local or long distance call, a page, or an e-mail
message), taxes, discounts, invoices sent, and payments received. It manages
equipment that is being rented or purchased, which means not only charging
for it, but keeping track of its location and managing an inventory of
equipment available for rental or purchase, and scheduling repairs on
equipment that is broken. Objectiva manages products, which are
combinations of the various pricing plans that a company is offering to
customers. It connects to other systems for accounting, to get network
events, and to load subscriber information on the switch. Objectiva is a
complex information system, but it is made up of a fairly small number of
highly reusable classes. This is a key to its flexibility and power.

Figure 9outline the core architecture needed for creating new types of
Entities for the system. Notice that TypeObject is being used for declaring
new types of objects. Here we can see a variation from the Adaptive Object-
Model architecture mentioned in the previous section. Notice that Entities
have a Context and the context hold onto the DataValues (attributes).



14 Joseph W. Yoder & Ralph Johnson

Figure 9. Objectiva Business Entity Model

Attributes are broken down into many different types based upon the
DataValue types as can be seen in Figure 10. Here we are looking at
primarily DiscreteAttributes though there are also MeasurementAttributes,
and ContinuousAttributes. An Adaptive Object-Model can vary the
Properties quite a lot by the use of subclasses as outlined in Figure 10.

Figure 10. Objectiva Data Values (Attribute) Model

Relationships were modeled as first class entities as shown in Figure 11.
The knowledge level (business rules) of this system primarily focused
around EntityTypes, Attributes, and their Relationships. Those there are also
EventTypes (not shown) that were basic Strategies to be fired under certain
events or conditions.



The Adaptive Object-Model Architectural Style 15

Objectiva has dozens of subclasses of Entity and EntityType. This is quite
different from the other examples we have described. It should also be noted
that the primary architecture of Objectiva had different versions of Smalltalk
code for describing the metadata and new versions of the business rules (by
writing methods) rather than pushing the data into a database. This was
because it was just as easy and fast to build and release this part of the
application through the evolution of Smalltalk code rather than being forced
to push these changes to a database.

Figure 11. Objectiva Entity-Relationship Model

• IDPH Medical Domain Framework
Many applications at the Illinois Department of Public Health (IDPH)

manage information about patients and people close to the patient, such as
parents and doctors. The programs vary in the kind of information (and the
representation) they manage. However, there are core pieces of information
that is common between the applications and can be shared between
applications.

Typically, the information being shared for the IDPH applications is a set
of observations [7, 10] about people and also relationships between people
and organizations. An observation describes phenomenon during a given
period of time. Observations play a large role in the medical domain
because they associate specific conditions and measurements with people at



16 Joseph W. Yoder & Ralph Johnson

a given point in time. Some typical medical observations are eye color,
blood pressure, height and weight. Some more specific types of information
can be seen for following up high-risk infants. This application captures
observations about the infant and the infant's mother such as HIV status,
drug and alcohol history, hepatitis background, gestational age, weight at
birth and the like.

One way to implement observations is to build a class hierarchy
describing each kind of observation and associate these observations with
patients. This approach works when the domain is well known and there is
little or no change in the set of observations. For example, one of the
applications at IDPH screens newborn infants for genetic diseases. In this
application, certain observations about the infant are made at the time of
birth such as height, weight, feeding type, gestational age, and mother's
hepatitis B indication. A natural implementation would be to create a class
for the infant, and create another set of classes and associate them with the
infant to capture the observations (see Figure 12).

However, whenever a business rules changed, or new type of information
needed to be collected, either a new class would need to be developed or an
existing class would need to have its description and methods changed, and
then the system would need to be recompiled and released to users of the
system. For example, the Refugee System that we developed for tracking
Refugee’s as they entered the country has over 100 different types of
observations.

PhysicalMeasure Blood

ObservationPerson

Measurement

convertTo:

Trait
traitValueQuantity

unit
value
convertTo:

EyeColor HairColor

GenderHeight Weight …
…

Figure 12. Basic Observation Model

This led to the creation of an Adaptive Object-Model by applying and
evolving Fowler’s Observation Model [7]. Figure 13 shows the resulting
class diagram for the implementation of observations with Validators.

Observations can either be PrimitiveObservations (basic values such as eye



The Adaptive Object-Model Architectural Style 17

color, weight, etc.) or they can be CompositeObservations (composed from
other Observations such as Blood Pressure which is a Systolic value over a
Diastolic value). Each Observation has its ObservationType associated with
it, which describes the structure of the Observation and hangs on to the
validation rules through its relevant Validator. Therefore, the
ObservationType is used to validate the structure and the values.

The ObservationType takes care of the structural properties of the
Observation that it is describing. For example, CompositeObservationType
is used to create and validate any kind of CompositeObservation and defines
the structure of the CompositeObservation. PrimitiveObservationType is
used to describe the possible quantity or discrete values and the validation
rules for each. PrimitiveObservations also have been enhanced to allow for
multiple values. For example, the language(s) that a person understands
could be a set of DiscreteValues.

RangedValidators also have an interval set of Quantities, which describe
the sets of valid values for the Measurement ObservationTypes. The
validation business rules for CompositeObservationType checks if all of its
components are valid. This could be enhanced to allow for a composite
function for validating these types of observations.

Each ObservationType knows how to create instances with its type.
PrimitiveObservations have a trivial structure, but CompositeObservations,

the structure has to be correctly established. This is a typical implementation
of a Factory for creating Observations when using TypeObjects.

Validator

RangeValidator

+isValid(quantity : Quantity)

-unit : Unit
-intervalSet : Collection

DiscreteValidator

+isValid(discreteValue : Symbol)

-descriptorSet : Collection

ObservationType

+createObservation()
+isValid(observation : Observation)

-phenomenon : Symbol
-multiValue : Boolean

1

n
PrimitiveObservationTypeCompositeObservationType

-structure : ObservationType

Observation

+isValid()

-recordedDate : Date

Party

CompositeObservation

-observations : Observations

PrimitiveObservation

n

n

1

Quantity
0..n

values

DiscreteValue
0..n

PartyType

1

0..n

n

n

n

Figure 13. Class Diagram of the Observation Adaptive Object-Model Architecture

In this system, there are Parties (people and organizations) that represent
the Entities for the Adaptive Object-Model, while the Properties are
represented by the Observations. The Observations are a special type of



18 Joseph W. Yoder & Ralph Johnson

Propertiy, which are values with history. There are many other business
rules that are described elsewhere [22, 23] that involve the types of legal
people and organizations (Parties), relationships between the Entities, and
the valid set of Properties.

• Similarities and Differences of Examples
All these systems allow for the creation of objects with attributes using

the TypeObject and Property patterns. The Argos, IDPH, and Objectiva
Systems modeled relationships as first class entities, while the UDP
Framework did not.

All systems had some type of Strategy for defining the business rules,
however this is where the architectures varied the most. Different problem
domains require different kinds of strategies and lead to different kind of
business rules. The business language becomes very domain-specific for
each Adaptive Object-Model and the way the rules are described depends on
the domain.

Also, GUI issues and tools are domain specific. The types of GUIs
needed and the types of tools vary among these systems. There are related
ideas that can be shared but in general, this is the hard part of building an
Adaptive Object-Model.

4. IMPLEMENTATION ISSUES

The primary implementation issues that need to be addressed when
developing Adaptive Object-Models are how to store and represent the
model in a database, how to present the domain-elements to the user, and,
how to maintain the model.

• Making Models Persistent
Adaptive Object-Models expose metadata as regular objects; it means

that the metamodel can be stored in databases following well-known
techniques. Object-Oriented databases are the easiest way to manage object
persistence. However, it is also possible to manage the model persistence
using a relational database.

It is also possible to store the metadata using XML (Extensible Markup
Language) or even XMI (XML Metadata Interchange Format). Note that no
matter how the metadata is stored, the system has to be able to read it and
populate the Adaptive Object-Model with the correct configuration of
instances (Figure 14). This is sometimes done using builders and
interpreters for creating and configuring the Entities, Attributes,
Relationships, and Behaviors from the meta-description.



The Adaptive Object-Model Architectural Style 19

Database

XML/XMI

Persistence
Mechanism

XML Parser Medata
Interpreter

Metadata
Repository/Namespace

Domain
Objects

Application

Figure 14. Storing and Retrieving Metadata

• Presenting the Model to Users
GUI issues also need to be considered when implementing dynamic

architectures. The Adaptive Object-Model described in the previous section
makes it easy to create new domain objects but the values still need to be
entered and presented to an “end users” through some user interface.
Regardless of the types of objects the application needs, some sort of view
needs to be developed for the user. These views could all be developed for
each application without getting any benefits of reuse. However, it is
possible to extend EntityTypes to allow for some standard views and make
building GUIs for the business objects easier.

An example of this can be seen in the Refugee application that we built
for IDPH. This application captures over 100 observations about refugees as
they enter the country. The observations in this example are both ranged
values (such as Blood Pressure, Pulse, and Temperature), and discrete values
(such as Heart, Lungs, Abdomen, and Skin).

However, even when the team learned how to use the model, they still
had to decide how to present these observations to an end-user and to make
sure that only meaningful values were collected about refugees. It took the
team five weeks of hard work to wire the first set of observations to a GUI.
While the problems were being worked out, management was wondering
why new ideas such as Mediators and Adaptors [8] were being presented
late in the game and why was it taking us so long. In reality it was just the
naming issue that was new to management and we were using well known
patterns for solving a mapping problem that the analysis model never
revealed The real gain came after they worked this problem out, as they
were able to then hook up over 90 observations in less than two days.
People then started seeing the power of the model as it was now easier to



20 Joseph W. Yoder & Ralph Johnson

change the business rules and there were not 100 classes to code, debug, and
maintain.

The moral of the story is that it can be easy to overlook GUI design
issues. Analysts and developers can get caught up in the design of the
business objects and overlook the user interface. Adaptive Object-Models
provide powerful techniques for building the business objects, but mapping
them to a GUI can be difficult since there are higher-level abstractions. It is
possible to design dynamic GUIs but this can be difficult and is usually
domain specific.

• Maintaining the Model
The observation model is able to store all the metadata using a well-

established mapping to relational databases, but it was not straightforward
for a developer or analyst to put this data into the database. They would
have to learn how the objects were saved in the database as well as the
proper semantics for describing the business rules. A common solution to
this is to develop editors and programming tools to assist users with using
these black-box components [18]. This is part of the evolutionary process of
Adaptive Object-Models as they are in a sense, “Black-Box” frameworks,
and as they mature, they need editors and other support tools to aid in
describing and maintaining the business rules.

• History of Rules and Data
Some other important implementation issues are how to deal with the

history of the actual data values and how to deal with versions and history of
the rules.

A common way to deal with history for data values is to keep track of
how the values change over time and change the Interpreter so that it
always picks the correct version when reading the values. The rules can be
treated similarly by including history information with the rules and make
sure that the interpreter always uses the right version of the rules. This is
especially important when values might be valid at one point in time, but
invalid at another. There are many patterns for dealing with history of this
sort[1, 4].

5. CONSEQUENCES OF AOMS

The main advantage of the Adaptive Object-Model is ease of change. An
Adaptive Object-Model is good if your system is constantly changing, or if
you want to allow users to dynamically configure and extend their system.
An Adaptive Object-Model can lead to a system that allows users to



The Adaptive Object-Model Architectural Style 21

"program without programming". Alternatively, an Adaptive Object Model
can evolve into a domain-specific language.

Turning a program into an Adaptive Object-Model usually reduce the
number of classes, and so make it smaller. Information that was encoded in
the program is now encoded in the database. This new class structure
doesn't change. Instead, changes to the specification lead to changes in the
content of the database.

The main business case for an Adaptive Object-Model is to make it
possible to develop and to change software quickly. Adaptive Object-
Models reduces time-to-market, by giving immediate feedback on what a
new application looks like and how it works, and by allowing users of the
system to experiment with new product types.

An Adaptive Object-Model also has several disadvantages. They can
take more effort to build. Adaptive Object-Models generally need tools and
support GUIs for defining the objects in your system. Adaptive Object-
Model requires a system to interpret the model. The Adaptive Object-Model
is embedded in a system, and effects its execution. Thus, Adaptive Object-
Models require adequate software support.

They can also be harder to understand since there are two co-existing
object systems; the interpreter written in the object-oriented programming
language and the Adaptive Object-Model that is interpreted. Classes do not
represent business abstractions because most information about the business
is in the database.

Adaptive Object-Models leads to a domain-specific language. Although
it is often easier for users to understand a domain-specific language than a
general-purpose language, developers of an Adaptive Object-Model inherit
all of the problems associated with developing any language such as
providing debuggers, version control, and documentation tools.

Adaptive Object-Models can also be slower since they are usually based
upon interpreting the representation of your object model. However, our
experience is that lack of understanding is a bigger problem than lack of
speed.

Finally Adaptive Object-Models can be harder to maintain. This is
usually the case when the primary architect leaves and the developers
designated to maintain the system do not understand these types of
architectures. However, developers that understand these architectures find
Adaptive Object-Models easier to maintain since there is generally less code
to maintain and typically a small change to the system can make for a large
change in the running application.



22 Joseph W. Yoder & Ralph Johnson

6. ALTERNATIVES AND RELATED WORK

The best-known alternatives or related techniques to Adaptive Object-
Model Architectures are Code Generators, Generative Programming,
Metamodeling, and Reflective Techniques.

Code generators produce either executable-code or source-code. This
technique focuses on the automatic generation of systems from high-level
descriptions. It is related to Adaptive Object-Model in that the functionality
of systems is not directly produced by programmers but specified using
domain-related constructs. There are also editors commonly built for
describing the metadata for generating code. These techniques are different
from Adaptive Object-Models primarily because it decouples the meta-
model from the system itself. Adaptive Object-Models immediately reflect
the changed business requirement without any code generation or
recompilation.

Generative Programming and Metamodeling are fields of study that have
been looking at different techniques for giving users the same power as those
given by Adaptive Object-Models. It is interesting to note that none of the
literature from these fields has described Adaptive Object-Models, although
Adaptive Objects-Models are widely used for building related architectures
that are used for production systems.

Generative Programming [5] provides infrastructure for transforming
descriptions of a system into code. Generative Programming deals with a
wide range of possibilities including those from Aspect Oriented
Programming and Intentional Programming. Although Generative
Programming does not exclude Adaptive Object-Models, most of the
techniques deal with generating code from descriptions. Descriptions are
based on provided primitive structures or elements and can evolve to become
a visual language for the domain.

Metamodeling techniques include a variety of approaches most of which
are generative in nature. So far, metamodeling has been more theoretical in
nature focusing on ways to create metamodels for creating models. In other
words, it is describing ways to create languages for generating models that
can then be realized. In general, these techniques focus on manipulating the
model and meta-model behind a system as well as supporting valid
transformations between representations [14]. Quite often the attention is on
the meta-model, or a model for generating a model, rather than the final
application that will reflect the business requirements.

Metamodeling techniques are related to Adaptive Object-Models in that
they both have a “meta” model that is used for describing (or reflect) the
business domain, there are usually special GUI tools for manipulating the
model, and metadata is usually interpreted for the creation of the actual



The Adaptive Object-Model Architectural Style 23

model [15]. The primary difference is that Metamodeling techniques as
provided by CASE tools generate the code from the descriptive information
while Adaptive Object-Models interpret the descriptive information at run-
time. Thus, if you change your business information with a CASE tool, you
will generate a new program, compile and release it to your users. While in
an Adaptive Object-Model, you change your business information, which is
usually stored in a shared database that the running systems have access to.
Then, once the information becomes available, the system immediately
reflects the new changes without having to release a new system. There has
been related work with UML, which is the closest metamodeling language
towards being realized for working systems. A good example can be seen
by the work on the UML Virtual Machine that has an Adaptive Object-
Model, which immediately reflect the changes in a metamodel.

Finally, one could make the argument that database systems, are
examples of Adaptive Object-Models. Database schemas are not hard-wired,
but are interpreted. Database objects are not objects really, but data stored in
a database. The key problem with databases is attaching method to these
objects.

7. CONCLUSIONS

The Adaptive Object-Model Architectural Style provides an alternative to
usual object-oriented design. Conventional object-oriented design generates
classes for the different types of business entity and associate attributes and
methods with them. These are such that whenever a business change to the
system is needed, a developer has to change the code and release a new
version of the application for the change to take affect. An Adaptive Object-
Model does not model these business entities as first class objects. Rather,
they are modeled by a description of structures, constraints and rules within
the domain. The description is interpreted and translated into the meta-
model that drives the way the system behaves. Thus, whenever a business
change is needed, these descriptions can change and be immediately
reflected in the running application. The most important design patterns
needed for implementing these types of dynamic systems are TypeObject,
Properties, Composite, and Strategy.

Architects that develop these types of systems are usually very proud of
them and claim that they are some of the best systems they have ever
developed. However, developers that have to use, extend or maintain them,
usually complain that they are hard to understand and are not convinced that
they are as great as the architect claims.



24 Joseph W. Yoder & Ralph Johnson

This architectural style can be very useful in systems; specifically
systems that emphasizes flexibility and those that need to be dynamically
configurable. However, this style has not been well documented and is hard
to understand; primarily due to the many levels of abstraction. We think that
part of this mismatch is because the architectural style is not widely
understood.

This paper describes the architectural style of Adaptive Object-Models,
including some examples along with advantages and disadvantages. We
hope that this paper will help both architects and developers to understand,
develop, and maintain systems based on an Adaptive Object-Model.

8. AKNOLDGEMENTS

We would like to thank the many people whose valuable input greatly
improved this paper; specifically we would like to thank: Ali Arsanjani,
Federico Balaguer, John Brant, Krzysztof Czarnecki, Brian Foote, Martin
Fowler, Alejandra Garrido, Mike Hewner, Dragos Manolescu, Brian Marick,
Reza Razavi, Nicolas Revault, Dirk Riehle, Don Roberts, Andrew
Rosenfeld, Gustavo Rossi, Weerasak Witthawaskul, and Rebecca Wirfs-
Brock.

9. REFERENCES

[1] Francis Anderson. “A Collection of History Patterns”. Pattern Languages of Program
Design 4. Addisson Wesley, 2000.

[2] Ali Arsanjani. “Rule Object Pattern Language”. Proceedings of PLoP2000. Technical
Report #wucs-00-29, Dept. of Computer Science, Washington University Department of
Computer Science, October 2000.

[3] Ali Arsanjani. Using Grammar-oriented Object Design to Seamlessly Map Business
Models to Component -based Software Architectures, Proceedings of The International
Association of Science and Technology for Development, 2001, Pittsburgh, PA.

[4] Andy Carlson, Sharon Estepp, and Marin Fowler. “Temporal Patterns”. Pattern
Languages of Program
Design 4. Addisson Wesley, 2000.

[5] Krzysztof Czarnecki & Ulrich W. Eisenecker. Generative Programming – Methods,
Tools, and Applications, 2000. Addison-Wesley, 2000.

[6] Brian Foote, Joseph W. Yoder. “Metadata and Active Object Models”. Proceedings of
Plop98. Technical Report #wucs-98-25, Dept. of Computer Science, Washington
University Department of Computer Science, October 1998. URL:
http://jerry.cs.uiuc.edu/~plop/plop98.

[7] Martin Fowler. Analysis Patterns, Reusable Object Models. Addison-Wesley. 1997.
[8] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.



The Adaptive Object-Model Architectural Style 25

[9] Erich Gamma, Richard Helm, and John Vlissides, Design Patterns Applied, tutorial notes
from OOPSLA’95.

[10] David Hay. Data Model Patterns, Convention of Thought. Dorset House Publishing.
1996

[11] Ralph Johnson, Bobby Wolf. “Type Object”. Pattern Languages of Program Design 3.
Addisson Wesley, 1998.

[12] Ralph E. Johnson and Jeff Oakes, The User-Defined Product Framework, 1998.
URL: http://st.cs.uiuc.edu/pub/papers/frameworks/udp.

[13] D. Manolescu. “Micro-Workflow: A Workflow Architecture Supporting Compositional
Object-Oriented Software Development”. PhD thesis, Computer Science Technical
Report UIUCDCS-R-2000-2186. University of Illinois at Urbana-Champaign, October
2000, Urbana, Illinois.

[14] N. Revault, X. Blanc & J-F. Perrot. "On Meta-Modeling Formalisms and Rule-Based
Model Transforms", Comm. at Ecoop'2K workshop '00, Sophia Antipolis & Cannes,
France, June 2000.

[15] Nicolas Revault & Joseph W. Yoder. "Adaptive Object-Models and Metamodeling
Techniques", ECOOP'2001 Workshop Reader; Lecture Notes in Computer Science,
Springer Verlag 2001.

[16] D. Riehle, M. Tilman, R. Johnson. “Dynamic Object Model”. Proceedings of PLoP2000.
Technical Report #wucs-00-29, Dept. of Computer Science, Washington University
Department of Computer Science, October 2000.
URL: http://jerry.cs.uiuc.edu/~plop/plop2k.

[17] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. “The Architecture of a UML
Virtual Machine”. Proceedings of the 2001 Conference on Object-Oriented Program
Systems, Languages and Applications (OOPSLA ’01), October 2001.

[18] Don Roberts, Ralph Johnson. “Patterns for Evolving Frameworks”. Pattern Languages
of Program Design 3. Addisson Wesley, 1998.

[19] M. Tilman, M. Devos. “A Reflective and Repository Based Framework”. Implementing
Application Frameworks, Wiley, 1999. On page(s) 29-64.

[20] Joseph W. Yoder, Brian Foote, Dirk Riehle, and Michel Tilman. Metadata and Active
Object-Models Workshop Results Submission; OOPSLA Addendum, 1998.

[21] Joseph W. Yoder & Reza Razavi. "Metadata and Adaptive Object-Models",
ECOOP'2000 Workshop Reader; Lecture Notes in Computer Science, vol. no. 1964;
Springer Verlag 2000.

[22] Joseph W. Yoder, Federico Balaguer, Ralph Johnson. “Architecture and Design of
Adaptive Object-Models”, Intriguing Technology Presentation at the 2001 Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’01); ACM SIGPLAN Notices, ACM Press, December 2001.

[23] Joseph W. Yoder, Ralph Johnson. “Implementing Business Rules with Adaptive Object-
Models”. Business Rules Approach. Prentice Hall. 2002.


