Position Statement: Active Object-Model

by Weerasak Witthawaskul

Department of Computer Science

University of Illinois at Urbana-Champaign

E-mail: witthawa@uiuc.edu

Introduction

In keeping pace with the rapidly change in business requirements, there is a need that application development paradigm has to be changed. Traditionally every business has its own information technology (IT) department to take care of company IT infrastructure and application development. However, due to high demand of business changes and new business opportunities, in addition to lacking of enough IT professional, almost IT department maintains a long application development backlog and there is less, if not at all, hope when their users will be able to get their business applications fulfilled.

While, many IT department has employed a rapid application development (RAD) tools in order to speed up their application development process, it does not help programmers much in building and maintaining a business logic, the core module that is crucial for business needs. As programmers usually come from the computer field, they don't have much knowledge about the specific business process requirement like real users who know their business the best. On the other hand, users don't know how to program and sometimes cannot precisely provide what they want in terms of application requirement. Along with the different technical terms they communicate, it is really difficult to come up with the exact application design and requirement.

Furthermore, most of the applications are developed according to the specified requirements, it is rather static and not easy to adapt when there are changes required. When there is a need to change, some are needed to be redesigned or even though it can be customized, the logic embedded in the program will have to be added and changed frequently so that it's rather difficult to understand, test, debug and keep the documentation up to date.

Discussion

One of the solutions is to employ the concept of division of labor in which people do what they do best. The application development process will be involved from both programmers and users. There is a separation between application logic and business logic such that programmers will build and maintain the former while users will create business logic and maintain their business data. If there is a change in business requirement, the users will be able to effectively make changes in their part without having followed the long application change management process. This solution will help increase productivity, accuracy, flexibility and business competitiveness.

There are many kinds of application and business logic separation. They are different in terms of flexibility and complexity. The system that has high flexibility comes with the cost of the system complexity. For example, a parameter-driven system provides a limited customizability that the customizable data or parameters must be known in advance. Other examples are provided in [1].

The separation of business logic from the application logic also introduces the concept of behavior such that the application is now data that is state dependent and behaves according to its own state. Each data along with its business logic, or "object", has its own well-defined behavior. The business model is therefore dynamic or "active". The business logic can be used as a data validation and/or trigger. For example, the data entry system might define an object model such that when there is a new data entry, it checks the data format of each field on the screen, validates the uniqueness of the record key and then post the transaction into the database. All the logic will be implemented into the business logic such that the system will be able to support any kind of data entry screen.

There are at least two approaches in developing business logic structure. One is an interpreter approach and the other is a code-generation approach. The former requires a specific business rule format that is easy to code by novice users yet flexible enough to accommodate virtually any business logic. This business rule will then be interpreted by an interpreter engine or a virtual machine that reads the business rule and process the data on the fly. The business rule creation step can be created manually from text files or automated from the visual development environment. This approach provides a flexible configuration, platform and programming language independent. The latter system converts the business rule into the source code that is ready to be compiled and integrated into the system. The big advantage is the performance and native code functionality. For example, the system can use the object oriented feature if it is compiled into an object-oriented programming language. However, it will strict into a language dependent and it'd rather difficult to port to another programming environment. The decision between choosing which approach depends on the performance and flexibility tradeoffs.

However, in order to support the high flexibility of business logic structure, it is very hard to develop an application that enables this functionality, that is, a system that does not know the data type or functionality in advance. The application logic must be very flexible. It must be able to keep data structure of the unknown data, or "metadata" and to do the execution according to the business logic. The implementation of the application logic is hard and domain specific. However, once it is developed, it can be used without or with minimal customization.

Furthermore, since the program behavior is depended on both the application logic and the current state of the data and business logic, it is virtually impossible for programmers or users alone to understand the current system. Hence, it complicates the maintenance process. If there are bugs, it is difficult to track whether it is from the application logic or business logic part. A good test and change management is required in order to minimize possible errors.

However, another good advantage of the active object model is the documentation automation. Since the business logic is created separately from the application logic and stored as part of the database. It is relatively easy to generate and maintain the documentation. Therefore the cost of application maintenance is lower.

Application

The active object model has been used in designing and implementing a dynamic database edit process in one of the manufacturing company. The database consists of a hundred relational tables shared by many departments across the enterprise. Since there are complex relationship among them, the system must maintain the consistency and accuracy of all table relationship, that is, when there is a transaction update to one tuple in the table, the system must know which other tables will be impacted and update them accordingly. In the past, the process must be explicitly coded in each programs where it is difficult to keep track of changes occurred. For example, when there is a business requirement change, the changed business logic must be updated in every program that is using it. However, if we separate the business rules from the application and treated them as part of the data ("object") and any program that accesses that data is able to invoke the rule according to the predefined standard interface of the event, it will help solve the problem. If, for instance, the business rule bound with the data is changed, every program that access the data will be automatically able to invoke the new rule without any change inside the program.

Currently, the business rules defined in the system are format validation, data-dependent validation, decorator, logic computation and database operations. Each object may be a field on the screen, a virtual variable, a tuple in a relational table and so on.

The system employs the interpreter approach where the format of a business rule is well defined. For example, a field-on-the-screen object has a business rule that maps itself to be part of a table tuple in the database and has its own format validation, that is, a date or an amount where it is invoked when a user enters data into it. This step can be done locally (or independent with other object). After the object has been entered, it will be checked against the data-dependent validation step which checks for any interdependency with other objects whether they are other fields on the same screen or they are data in other table. For instance, a product code field in a product sales data entry must be valid in the product detail table, otherwise an error message will be shown. The business logic is stored in a metadata table which are a set of relational tables. The communication between an object that requests a validation and a server that processes the request needs not be in the same machine. It can be implemented in a distributed environment such that there is one server that maintains all objects and their model and there are many clients that initiate and request the service. It fits well in the distributed, browser based, client-server environment.

Conclusion

The separation of application logic and business logic will improve the system flexibility and adaptation. It can be done by keeping data definition and business rule as a data of data or 'metadata'. This metadata will ensure the consistency and accuracy of the data in the system without having known the type, format or data-interrelation in advance. Users are empowered to create and maintain what they know best, their business logic, in an easy-to-understand format. Having spent less time in source code changes and redesign, developers may spend more time extending a system functionality without impacting existing ones.

Reference

[1] Brian Foote, Joseph Yoder, "Metadata and Active Object-Models", PLOP'98 conference, Monticello, Illinois 1998.

