Position Paper For OOPSLA ’98 Workshop

“Metadata and Active Object-Models”

By: Peter Hatch

My Background:

I am a Master's Degree student working under Ralph Johnson at the University of Illinois. My background is in the modeling of complex biological systems and object oriented programming. Currently my interests include the implementation of object oriented languages and how the use of these languages and their accompanying tools can increase developer's productivity. My thesis centers on the construction of a scientific data analysis packages for doing quality assessments of the health of natural lands. I am also involved in the Linux port of ObjectShare's VisualWorks Smalltalk environment, working primarily with Eliot Miranda.

Two relevant projects:

I am working with the Illinois Department of Public Health (IDPH) to develop a framework of sorts to allow them to easily generate new programs that track various medical testing data. The effort is led by Joe Yoder and Ralph Johnson.

IDPH faces several challenges in this effort. Currently, we are working on programs which track infant immunizations, blood lead screening, and one which tracks screenings for five debilitating genetic diseases. In the past, different teams would develop each of these programs with little inter-team communication. This created a lot of redundant/duplicate code. We are working to help IDPH develop an environment that allows for the rapid development of new applications, a system that must also be able to handle programmer attrition.

The process involves the construction of a library of reusable components which future programmers can use. One of the main problems is that government organizations are not able to respond very quickly to changes in requirements, mostly due to a distribution of responsibility for various aspects of the programs they produce. For instance, if a database change is required for a new project that change will affect all programs produced prior to the new project and the existing programs must be made to accommodate the database updates. There are also many issues regarding the validity of data that is entered into the programs. The validity of a certain set of data might change as time goes by, so abstracting the rules for data validity is quite important. Different hospitals might need variations of these rules, so they cannot be hard coded.

We recognize that it probably isn't possible to build a black-box framework for this purpose, if for no other reason than the necessary flexibility of the system. Our system needs to be able to support all future application development, and hence must allow for the creation of new classes of objects. What we can do is recognize that certain rules exist for the treatment of data, and we can encapsulate/abstract those rules to the extent that new applications need only derive their rules and follow the guidelines for incorporating those rules into the system. This will allow for very simple customization of software to meet the specific needs of individual sites. For example, the Newborn Screening application requires that certain constraints be placed upon the birth date of an infant and the date on which a blood sample is taken. If those rules are abstracted then the logic of part of the Newborn Screening application can be reused for any blood sample-based application that may come in the future. In this way, portions of the Newborn Screening application can be reused for any future application where the blood samples' timestamps need to pass a temporal verification algorithm.

Another reason to incorporate this abstraction is that our system is still in it's infancy. Our database is going through constant changes, and if the developers were not able to abstract the domain-to-database interface we would spend much more time accommodating these changes. To put it simply, it makes our lives easier. In previous systems, even a minor database change required tens of hours to accommodate since the database-specific information was (seemingly) randomly dispersed throughout the application's structure. Certain tools like the Refactoring Browser made the changes easier, but they still involved a "search and replace" strategy at best. In the current system, the application's knowledge of the database has been abstracted to the degree that a single programmer can accommodate most normal database changes.

I am also working on another project, this one for a Chicago company (Conservation Research Inc.). The application is very simple on the domain level (it took only six days or so to implement), but the application/GUI level is more complex. The application is used for the analysis of quantified taxonomic data and generates statistical tables. These tables are used to gauge the health of a plot of land.

The challenge of this application is that different users need to enter their data in different ways. Configurability is a key requirement. Since configurability is only limited by the rules that the developer imposes upon the program, my goal is to abstract those rules to such an extent that the program is capable of accepting those rules from the user, thus enabling the users (who are largely computer-illiterate) to customize their application environments. This is proving to be a formidable task.

Observations:

I have notices that while the software design patterns used in these two systems are very important, even more important are the patterns for organizing the control of the software design/implementation process. It is very interesting to see this, having thought for a long time that the actual design of the software systems would be of the most importance to the overall effort.

When I began the project for CRI in Chicago, I was well aware from my prior experience and training that I would need to make the software resilient to changing specifications that came from things such as the use of alternate regional "databases". These databases are relatively simple monolithic structures that contain information about each of the plant species that exist in a particular region. Due to the nature of biological taxonomy, different regions have different ways of representing the same data, even to the degree that a particular plant might even have different scientific names in different regions of the country. To accommodate such things I abstracted them into first class objects so I could isolate the program from data variations. In this way, I am developing a pluggable interface to the different databases.

This kind of thing is very common in OO design, because we want the resulting software to be easier to maintain and expand to incorporate new facilities. What I've come to realize is that the process I go through as a developer to explore where these kinds of abstractions need to be made in the software model is very similar to the process I've had to go through to isolate myself from changing requirements motivated by the changing attitudes of the clients. My clients are not experienced with application development or with windows environments. As such, they are going through a learning process to discover what the actual specifications of the program are. This is different from having the requirements change due to outside forces in that the changes come from the clients as they discover what is possible in a windows environment (they are used to DOS environments). The solution to isolating the program from these changing requirements is the same regardless of the motivation of the change, but it is very important to recognize the changes that come from the clients as they explore different ways of organizing the program that they didn't realize were possible. To handle both types of change I am attempting to locate where the sources of change are, and encapsulating those regions into meta-data representations.

A very similar thing occurs at IDPH. They have a database (this time a traditional database in DB2) which is being designed at the same time the programmers (including myself) are developing the system that queries the database. Initially, we had a design for our enterprise components that required extensive alteration each time the domain analysts changed the database design. This happens sometimes on a weekly basis. After a while, we started to notice that about half of our time was spent dealing with modifications to the code that needed to be made to accommodate the database changes. Our solution was to form first class representations of the database tables. In this way, we have isolated ourselves from changes that come from the process of the analysts learning what their system should actually look like.

The major benefit I have received from these two experiences is that I now see that I can take advantage of the presence of meta-data not only to buffer my applications from a changing world, but also to buffer them from changes that come from clients as the clients learn more about their domain and how it can be represented by a computer.

Conclusion:

It is widely known that many domain models attempt to model systems which are influenced by outside forces thus creating a need for developers and analysts to try to abstract the meta-qualities from certain "hot spots" in the systems. This is needed in the process of assisting the domain experts in the development of their domain models. What is interesting is that a very similar process occurs as the developers try to elicit program requirements from the domain experts. There are hot spots in this interaction as well, certain places in the applications that change frequently that arise as the domain experts learn about how their ideas can be represented in their application. It has been valuable for me to learn to recognize those hot spots in the development process because they are every bit as important as those that occur in the process of modeling the domain.

Why a Bank Needs Dynamic Object Models

Dirk Riehle, Erica Dubach
UBS AG, Ubilab
P.O. Box, CH-8098 Zurich
Dirk.Riehle@ubs.com, Erica.Dubach@ubs.com

Abstract

A modern bank needs several attributes for successfully surviving in the market place. Two key attributes are that it flexibly reacts to change, and is capable of innovation. Much of a modern bank’s processes and organizational structures are reflected in software. Therefore, a bank’s IT is a key player in guaranteeing these attributes. In this position paper, I discuss how maintaining these attributes influences the definition and introduction of new banking products, and how I believe that IT can improve its support through the use of dynamic object models.
Current situation

From an IT (information technology) point of view, the typical process of developing and introducing a new product by a bank division looks like this: Some gifted bankers or a committee has an idea, plans it, and eventually assigns a development task to one of its software development/maintenance units. The IT unit then either designs and implements new software or adapts existing systems so that they support the new or refined product.

The development of a new product varies significantly between division and between product types. It might take from a few weeks to several months until a new application release is available. Different divisions use different tools, for example 4GL systems, case tools and procedural languages, or object orientation and frameworks.

Common to all these approaches is that

· the developers need to understand the banking domain and their task well in order to build adequate software; and that

· the developers devote much of their time coping with the technical complexity of their development approach and its tools.

This approach leads to a noticeable delay between the definition of an idea and the ability of the bank to introduce the product into the marketplace. The consequences are that

· time-to-market is possibly too long: the window of opportunity is missed; products, in particular short-lived ones, do not pay back the investment made into their development, etc.

· the software is inadequate: what may have been defined on paper may not be what the bankers get, in particular, if the product is complex.

· innovation is hindered: if it takes a few weeks or even month until a product can be handled using a computer, no playful exploration and what-if scenarios are possible.

Dynamic object models seek to overcome these problems by drastically reducing time-to-market, by giving immediate feedback on what a new application looks like and how it works, and by allowing bankers to experiment with new product types.

What dynamic object can do for us

It is not yet well defined what a dynamic object model is. My take at a first definition is the following:

An object model is an abstract representation of a particular domain, using objects as the description mechanism. A dynamic object model is an object model whose object representation is interpreted at runtime and can be changed with immediate (but controlled) effect on the system interpreting it.

Obviously, a dynamic object model cannot be thought of without a system interpreting the model. The dynamic object model is embedded in a system, and effects its execution. Thus, dynamic object models require adequate software support. The software must provide the following functionality:

· a metamodel that provides the model elements from which object models can be build;

· tools that let users define object models;

· a model engine that interprets or just-in-time-compiles-and-runs object models;

· a well-defined connection between an object model definition and its execution by a model engine.

Let us examine the consequences of using dynamic object models.

The primary property of using dynamic object models and its supporting software is that changes to an object model can be effective immediately. The model engine may immediately execute the new model, which means, for example, that a new product type is in place with a minimal delay.

The positive consequences of this minimal turn-around time are:

· time-to-market is as short as possible;

· costs of developing software support for new products are drastically reduced;

· misunderstanding between bankers and IT is reduced, as immediate feedback is provided;

· innovation is fostered: given a safe setting, changes to a model can be explored and played with.

The negative consequence of this approach is:

· generic tools may be sub-optimal, as they may not provide the best handling possible.

Product-specific tools typically do a better job in supporting the handling of a new product than generic tools do. But then, if product-specific tools are needed (which may not be the case for short-lived products), they can always be implemented later, after one has learned from using the generic tools what the requirements for these product-specific tools are.

State of the art

As the UIUC workshop on "metadata and dynamic object models" showed, several systems of this type already exist and are in use in industries like insurance and telecommunications billing.

In addition, personal communication with other researchers suggests that similar efforts are going on in the R&D departments of large enterprise software solution providers like SAP and BAAN.

All systems we have seen use a metamodel based on object concepts. Existing approaches like knowledge-based systems, constraint systems, or procedurally implemented systems, tend to be too far away from providing the proper modeling elements for modeling "the real world."

Object orientation provides a significant advantage, because it has always been aimed at modeling domains, for example, business domains. Other technologies can be used as a support of object orientation. For example, constraint systems aid in implementing business rules. Thus, an object-oriented metamodel may serve as a core, as the common integration platform, but probably needs to be extended with further modeling concepts.

Systems with a dynamic object model are inherently reflective systems. As reflective systems are becoming more common, and the involved concepts become more widely understood, we may eventually help free reflective systems from their obscurity and give them a (non-technical) business justification.

Model driven systems have been built previously, probably precisely for reasons given above. The difference to these approaches is that today, we have an improved understanding of the modeling issues involved. In particular, we can use object orientation as a common basis, and we now better see the business justification.

Conclusions

I conclude that for a bank it is critical to build up know-how in this area. Whether this know-how is built up by buying and analyzing systems, or by developing its own systems is merely a tactical issue. What is important, is that these kinds of systems will play a significant role in the future. They are a key to achieving flexible reaction to change and maintaining being innovative.

Many issues surrounding dynamic object models are unclear at this point of time. As far as I know, they have not yet been addressed by openly accessible research. Questions, which I suggest for the workshop to address, comprise, but are not limited to:

· Expressiveness of a metamodel

· How big should a metamodel be?

· How do a metamodel and the domains being modeled relate?

· Execution of dynamic object models

· How are the models evolved?

· How are conflicts between different model versions handled?

· Use of available technologies

· Which available technologies can be used?

· How to best integrate existing technology into a system based on dynamic object models?

· Development approach

· How do we need to adapt the development approach?

· How do we hook-up product specific tools?

I hope that these questions will contribute to a workshop at which we will have lots of fun and think deeply about these kinds of systems and what they can do for us.

Copyright 1998 Dirk Riehle, UBS AG, Ubilab. All rights reserved.

A Formalization of Dynamic Object Models

Claudia Pons* Gabriel Baum* Miguel Felder**

*Lifia-Universidad de La Plata

[cpons,gbaum]@sol.info.unlp.edu.ar
**Universidad de Buenos Aires

Pragma Consultores SRL

felder@dc.uba.ar

http://www-lifia.info.unlp.edu.ar/
Abstract

In this paper, we define an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models: formality, usability and flexibility.

The proposed conceptual model integrates both of the levels in the architecture of modeling notations (i.e. model and metamodel levels) into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels. This integration is particularly useful for the description of evolution of system specification (e.g. evolution of business rules). For example, it is possible to formally specify how a modification made to a model impacts on the modeled system.

1. Introduction

2. Background and motivation

Object oriented software development must be based on theoretical foundations including a conceptual model for the information acquired during analysis and design activities. Conceptual models must fulfill the following three requirements:

1- conceptual models must be formal. The more complete, consistent, and formal the conceptual model is, the more precise and unambiguous engineers can be in their description of analysis and design information. Formal verification of this information is very important because errors at this stage have a high and costly impact on the subsequent stages of the software development process.

2- conceptual models must be usable. The use of formal approaches in large-scale industrial systems development is still quite uncommon. The reasons for this fact are mainly due to the complexity of their mathematical formalisms that are difficult to understand and to communicate to the customer. As a consequence, it has been proposed to combine the advantages of intuitive graphical modeling notations on the one hand and mathematically precise formalisms on the other hand, in development tools. The basic idea for this combination is to use mathematical notation in a transparent way, hiding it as much as possible under the hood of graphical notations. This approach has advantages over a purely graphical specification development as well as over a purely mathematical development because it introduces precision of specification into a software development practice while still ensuring acceptance and usability by current developers.

3- conceptual models must be flexible. The dynamic nature of contemporary business requirements forces developers to make their application more flexible and adaptable. Business rules change dynamically, so it is necessary to provide a flexible representation of them. In the last few years the concept of Dynamic Object Model has emerged. A system with a dynamic object model has an explicit object model that it interprets at run-time. If you change the object model, then the system changes its behavior, allowing a company to evolve the way it does its business.

3. Contributions of this work

In this paper, we define an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models:

1. Formality: the proposed conceptual model has a formally defined syntax and semantics. It is based on order-sorted dynamic logic with equality, following the ideas presented in [Wieringa et al.94, Wieringa and Broersen 98]. We use dynamic logic as the formal kernel language due to its simplicity, high expressive power and appropriateness for representation of behavioral and structural concepts of object-oriented systems.

2. Usability: the formalism is hidden under graphical notation. We address the problem of gaining acceptance for the use of an unfamiliar formalism by implementing an automatic transformation method, which defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in Unified Modeling Language (UML) [Rational 97a,b].

3. Flexibility: the conceptual model uses explicit representation of data and metadata, allowing software engineers to describe evolution of system specification (e.g. evolution of business rules).

4. A two levels conceptual model

Visual modeling languages are graphic languages for specifying, visualizing, constructing and documenting the artifacts of software systems prior their construction or renovation. Generally, the conceptual framework for modeling notations [Rational 97b] is based on an architecture with two levels:

1. metamodel level. A metamodel is a model for the information that can be expressed during software modeling. Basically, a metamodel defines the semantics for representing object models. It consists of entities defining the model language such as Class_diagrams, State_machines, Sequence_diagrams and so on.

2. [image: image3.wmf]a Person

name = “John Smith”

phone = “408-555-1212”

an Address

street = “123 Main St.”

city = “Lalaland”

state = “CA”

zip = “12345”

address

model level. On the other hand, a model is an instance of a metamodel. It describes the objects inherent to the application domain: for instance: BankAccount, Client etc.

Figure 1: Levels of Specification in an Object Oriented System

Figure 1 illustrates the relationship between the two separate levels of specification. SpecUML is the UML metamodel (i.e. a description of the UML language), its semantics is the set of all the well-formed UML models. It contains constraints over model entities, such as ‘class names are unique’. On the other hand, SpecSYS is a description of the objects in a particular system. It expresses constraints over objects, such as ‘withdrawals decrement the balance’. This separation of concepts leads to the following problem: if both specifications are separate (or expressed in different formalisms), it is not possible to express relationships between entities belonging to different levels (for example, it is not possible to specify how a modification made to the model impacts on the modeled system).

In this section we present a formal model for representing the information acquired during analysis and design processes. This formal model integrates both of the levels in the architecture of the conceptual framework for modeling notations into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels.

The formal model consists of the information proceeding from:

1. (UML,UML)
formal specification of the metamodel.

2. (SYS, SYS)
basic specification of the model.

3. (MMM, INST (COMP)
instantiation and completion axioms.

The metamodel specification and the basic part of the model specification are both written once for all, the instantiation axioms and the completion of the model specification are both obtained by the application of an automatic transformation method that creates them from a UML model.

In section 2.1 we describe the formalization (UML,UML) of the metamodel. In section 2.2 we sketch the formal specification (SYS, SYS) of the model level. Finally in section 2.3 we describe the logical model integrating both levels.

5. Metamodel level

6. Elements in the metamodel level

In the UML, class diagrams model the structural aspects of the system. Classes and relationships between them, such as generalizations, aggregations and associations constitute class diagrams. On the other hand, the dynamic part of the system is modeled by sequence and collaboration diagrams that describe the behavior of a group of instances in terms of message sendings, and by state machines that show the intra-object dynamics in terms of state transitions.

It is important to formally define how the different UML diagrams are related to one another, to be able to maintain the consistency of the model. Moreover, it is important to specify the effect of modifications of these diagrams, showing what is the impact on other diagrams, if a modification is made to one diagram.

7. Evolution in the metamodel level

Object-oriented system specifications evolve over their life cycle of for a variety of reasons. One of the most common forms of evolution involves structural changes such as the extension of an existing specification by addition of new classes of objects or the addition of attributes to the original classes of objects. At the other extreme, evolution at this level might reflect not only structural changes but also behavioral changes of the specified objects. Behavioral changes are reflected for example in the modification of sequence diagrams or state machines.

8. Formal representation of the metamodel level

In this section we give a formal specification of the metamodel level using a formal language based on Dynamic Logic (DL). This specification consists of a signature (UML= ((SUML, (), FUML, PUML) and a formula UML over (UML. The elements of the initial algebra denoted by the specification are model elements, such as classes, relationships, state machines, etc. The transition relations between possible worlds represent modifications on the specification of the system, for example adding a new class, modifying an existing class, etc.

The formula UML is the conjunction of two disjoint sets of formulas, S and D of static and dynamic formulas respectively. The former consists of first-order formulas which have to be valid in every state the system goes through (they are invariants or static properties). These rules are used to perform schema analysis and to report possible schema design errors. The latter consists of modal formulas defining the semantics of actions (i.e. model evolution).

The formal specification of the metamodel has been written once for all, but it might be enriched by defining new properties that developers want to verify over models, or it might be modified to reflect modifications on the metamodel definition (e.g. addition of new elements to the modeling language).

For space limitations only a brief part of the specification will be shown (for a more detailed presentation, see [Pons 98]).

Specification of Classifier

Sorts
Classifier

Taxonomy
Classifier(GeneralizableElement

Updatable functions

attributes: Classifier(Seq of Attribute.

operations: Classifier (Seq of Operation

Actions

addAttribute: Classifier x Attribute (Act

addOperation: Classifier x Operation (Act

deleteAttribute: Classifier x Attribute (Act

deleteOperation: Classifier x Operation (Act

Axioms
(c:Classifier (a1,a2:Attribute

Static axioms

‘no attributes may have the same name within a classifier’

(a1(attributes(c) (a2(attributes(c)

 (name(a1) = name(a2)) (a1 =a2

Dynamic axioms

(addAttribute(c,a)(true (a(attributes(c)

[addAttribute(c,a)] a(attributes(c)

(deleteAttribute(c,a)(true (a(attributes(c)

[deleteAttribute(c,a)] a(attributes(c)

End specification of Classiffier

Specification of StateMachine

Sorts
StateMachine

Taxonomy
StateMachine(ModelElement

Updatable functions

context: StateMachine(ModelElement

states:
 StateMachine(Set of State

transitions: StateMachine(Set of Transition

Actions

addState: StateMachine x State(Act

addTransition: StateMachine x Transition(Act

deleteState: StateMachine x State(Act

deleteTransition: StateMachine x Transition(Act

Axioms
(h:StateMachine, (t:Transition

Static axioms

t(transitions(h) (source(t)(states(h) (target(t)(states(h)
‘compatibility between views: only features of its context class

can be used within a state machine’

t(transitions(h)(trigger(t)(operations(context(h))

Dynamic axioms

(addTransition(h,t)(true (t(transitions(h)

[addTransition(h,t)] t(transitions(h)

(addState(h,s)(true (s(states(h)

[addState(h,s)] s(states(h)

End specification of StateMachine

9. Model Level

10. Elements in the model level

The elements in the model level are basically instances (data value and objects) and messages. At the model level a system is viewed as a set of objects collaborating concurrently. Objects communicate each other through messages that are stored in semi-public places called mailboxes. Each object has a mailbox where other objects can leave messages. There exist privacy requirements to make sure that for all object o, only o receives messages destined to o.

Object and DataValue

An object is an instance that originates from a classit is structured and behaves according to its class. All objects originating from the same class are structured in the same way, although each of them has its own set of attribute links. Each attribute link references an instance, usually a data value. The class (i.e., the set of features that the object conforms to) may vary over time. At run time an object is defined by,

· its identity;

· Its classifier;

· The values of its attributes and associations (i.e. its internal state);

· Its private mailbox containing the messages that it has received and not processed yet.

Another kind of instance is data value, which is an instance with no identity that cannot change its state
Messages

The reception of a message causes the invocation of an operation on the receiver. The receiver executes the method that is found in the class that corresponds to the operation. The reception of a message by an instance may cause a transition and subsequent effects as specified by the state machine for the classifier of the recipient.

A message is a triple composed by

· The name of the message (which is the name of the operation invoked by the message)

· The identity of the destination object

· The actual arguments for the parameters of the invoked operation
11. Evolution in the Model level

· At this level, the system may evolve for the execution of three kinds of actions:

· call action: a call action is an action in which a message is created that causes an operation to be invoked on the receiver. The execution of an operation may cause modifications on the internal state of the receiver, as well as the explicit sending of messages to other objects.

· create action: a create action is an action resulting in the creation of an instance of some classifiers.

· destroy action: a destroy action is an action in which an instance causes another instance to cease to exist.
12. Formalization of the model level

In this section we give a formal specification of the elements in the model level. This specification consists of a signature (SYS= ((SSYS,() FSYS, PSYS) and a formula SYS over (SYS. The elements of the initial algebra denoted by the specification are system elements, such as objects and messages. The transition relations between possible worlds represent system evolution.

At this level, the system may evolve for the execution of three kinds of actions:call actions, create actions and destroy actions. The Action symbol . (dot) denotes call actions. The formula [(obj_term.message_term)] Pred_term means that immediately after the object denoted by obj_term receives and executes the message denoted by message_term, the Pred term is true. A reception of a message states that the object is prepared to react to the receipt of the message. The formula specifies the expected behavioral response. The action formulas representing the state transitions corresponding to the reception and execution of a message m by an object o, are:

1- Privacy conditions:

m(mailBox(o) (receiver(m)=o ‘only o receives messages destinated to o’.

(o.m(true (m=first(mailBox(o)) ‘only messages contained in the mailBox are proccessed. The proccessing order is FIFO’.

2- No Dangling behavior:

m(mailBox(o) (specificaton(m)(operations(classifier(o)) ‘Objects do not receive messages that they do not understand’.

3- Receipt of message:

[o.m] mailBox(o) = mailBox(o) – firt(mailBox(o)) ‘after being processed, massages are removed from the mailBox’.

4-Guards and Effects:

(o.m(true (isLocal(o,m) (
 (s:StateMachine(context(s)=classifier(o) (
(t:Transition(t(transitions(s) (trigger(t)=specification(m)

(source(t)=currentState(o) ([o.m]currentState(o)=target(t)

(eval(guard(t)[self/o, parameters(guard(t))/arguments(m)])=true

((n:Message(n(effect(t) ([o.m]n(mailBox(receiver(n))))

‘A message sending might represent a local invocation or a call action. A local invocation is a special kink of message that invokes a local operation (e.g. modifications on the internal state of the receiver). This type of invocation takes place without the mediation of a state machine). On the other hand Call actions are represented through transitions in a state machine. To execute a message, the receiver must be in an appropriate state and the guard associated with the message (where formal parameters have been replaced with actual arguments) must evaluate to true. The execution of a message m implies two kinds of changes in the state of the system:

 - changes in the internal state of the receiver of m;

- changes in the mailboxes of any object in the system (these changes are produced when a set of messages is emitted during the execution of m)’.

5- Fairness conditions:

(m:Message (o:Object (m(mailBox(o) (((o.m(true)
‘Every message that was sent will be received and processed’

For space limitations only a brief part of the specification will be shown (for a more detailed presentation, see [Pons 98]).

Specification of Instance

Sorts
Instance

Taxonomy
Instance(ModelElement

Updatable functions

slots:
 Instance (Set of AttributeLink

linkEnds: Instance (Set of LinkEnd

classifier: Instance (Classifier

value: Instance x Name (Instance

Axioms
(i:Instance

Static axioms

‘the AttributeLinks matches the declarations in the Classifier’

(l:AttributeLink(l(slots(i) (attribute(l)(allAttributes(classifier(i)))

value(i,n)=value(l), where l(slots(o) (name(attribute(l))=n

End specification of Instance

Specification of Object

Sorts
Object

Taxonomy
Object (Instance

Nonupdatabel functions

first: (Object

succ:Object (Object

Updatable functions

mailBox: Object (Seq of Message

Actions

-.-: Object, Message (Act

Axioms
(o:Object, (m:Message

Static axioms

m(mailBox(o) (receiver(m)=o

m(mailBox(o) (specificaton(m)(operations(classifier(o))

Dynamic axioms

m(mailBox(o) (specificaton(m)(operations(classifier(o))

(o.m(true (m=first(mailBox(o))

...........................

End specification of Object

13. Integration of both levels: MMM logic

To express the integration of the model level with the metamodel level we impose a few restrictions on signatures, and thus on the general language. The resulting language is called Model&MetaModel Language (MMM Language).

A model&metamodel signature MMM=((S, (), F, P) is a Dynamic Logic signature with the following special features:

· It includes the signature UML.

· It includes the signature SYS.

· There is an updatable predicate symbol, Exists:Object.The predicate Exists defines the set of existing objects in each state.

· There is an updatable function symbol currentState:Object(Name indicating the current state of objects.

· There is an updatable predicate symbol, Enabled:Act. This predicate indicates which Actions are allowed to happen in each state.

An integrated specification of an object-oriented system is a pair (MMM,MMM), where MMM = UML(SYS(JOINT. Firstly, UML is the formula defining the metamodel semantics. Secondly, SYS is a formula describing the semantics of objects and messages. Thirdly, JOINT is the formula describing the particular aspects of the system that is being specified.

14. It is important to emphasize that the formulaJOINT is constructed over the extended MMM language and thus it can express at the same time model properties (e.g. behavioral properties of objects), metamodel properties (e.g. properties about the specification of the system) and properties relating both aspects. Particularly, the formula JOINT includes the formulas INST and COMP. Formula INST is the conjunction of all instantiation axioms (it describes which elements of the metamodel are used to describe the particular system). Formula COMP is the conjunction of all completion axioms (it describes the basic behavioral blocks, such as local actions and states of the objects in the system). Both formulas can be automatically derived from the UML specification (see example in section 3).

15. Transparent use of the formal model

To gain acceptance of the proposed formal model by typical engineers, we are developing an automatic transformation method. This transformation method defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in the Unified Modeling Language (UML). The key components of the transformation method are rules for mapping the graphic notation onto the formal kernel model defining the instantiation axioms and the completion axioms.

[image: image4.wmf]Class Area

References Area

Instance Area

System References

[image: image5.wmf][image: image6.wmf]a Person

name = “John Smith”

phone = “408-555-1212”

an Address

street = “123 Main St.”

city = “Lalaland”

state = “CA”

zip = “12345”

address

[image: image7.wmf]Class Area

References Area

Instance Area

System References

[image: image8.wmf]

We illustrate the transformation method through an example. Figure 2 shows the UML specification of the bank system. Figure 3 shows the axioms derived from this graphic specification.

16. Related Work

There are a number of proposals providing formal foundations of object-oriented analysis and design techniques (particularly, graphical modeling techniques). According to the architecture of modeling notations, we classify them in two different groups: model-based and metamodel-based approaches.

· In the model-based approaches (e.g. see [Moreira and Clark 94, France et al. 97(a), Goldsack and Kent 96, Waldoke et al. 98, Wieringa and Broersen 98]) a formal specification of the system is generated from a semi-formal graphical object oriented model. The key components of this approach are rules for mapping syntactic structures in the graphical modeling domain to artifacts in the formal modeling domain. In this way, specifications expressed using a user-friendly notation have a semantics in the formal kernel model.

· In the metamodel-based approaches (e.g. see [France et al. 97 (b), Breu et al. 97, Klar and Geisler 97, Overgaard 98]), rather than generate formal specifications from each semi-formal model, the objective is to give a precise description of core concepts of the graphical modeling notation and provide rules for analyzing their properties. As a consequence of this precise description, the semi-formal models become formal and then amenable to rigorous analysis.

In [Pons 98] we analyze the principal differences between both approaches through an example. This analysis makes evident that the model-based approach is more appropriate for the specification of the information that is inherent to the application, whereas the metamodel-based approach allows the representation of constraints over the metamodel entities in a more adequate way. None of these approaches allows the specification of consistency constraints between entities belonging to different levels.

Figure 3: formal specification of Bank system

SpecBANK = (BANK,BANK)

where
BANK = MMM andBANK = UML(SYS(JOINT_BANK
JOINT_BANK = INST _BANK(COMP_BANK
Instantiation axioms INST_BANK
(m:Model

(Exists(m) (
((c1:Class

(c1(elements(m) (name(c1)=BankAccount

((a:Attribute

(a(attributes(c1) (name(a)=balance type(a)=Integer)

((p1,p2:Operation

(p1(operations(c1) (name(p1)=deposit (size(parameters(p1))=1 (type(first(parameters(p1))=Real (
p2(operations(c1) (name(p2)=withdrawal (size(parameters(p2))=1 (type(first(parameters(p2))=Real))

((h:StateMachine

(h(elements(m) (context(h)= c1 (states(h)={s1,s2}(name(s1)=debit (name(s2)=credit (transitions(h)={t1,t2,t3,t4,t5} (trigger(t1)=p1 (source(t1)= s1 (target(t1)= s2 (guard(t1)=(....)

 (effect(t1)= (...) (trigger(t2)= p2 (source(t2)= s2 (target(t2)= s1 (...........)))

Completion axioms COMP_BANK : this formula is integrated by state predicates and local invocation formulas.
· State Predicates: This formula describes the possible states of the objects belonging to BankAccount.

(o:Object (name(classifier(o))=BankAccount (

currentState(o)=debit (value(o,balance)(0

(currentState(o)=credit (value(o,balance)>0)

· Local Invocations: This formula specifies the invocation of a local operation (i.e. the message modifies the internal state of the receiver).
(o:Object (name(classifier(o))=BankAccount (

IsLocal(o,setBalance) (
(m:Message (name(specification(m))=setBalance ([o.m]value(o,balance)=first(arguments(m)))

17. Concluding remarks

In this paper, we have defined an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models:

· Formality: the conceptual model has a formally defined syntax and semantics. It is based on order-sorted dynamic logic with equality.

· Usability: We address the problem of gaining acceptance for the use of an unfamiliar formalism by implementing an automatic transformation method, which defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in Unified Modeling Language.

· Flexibility: the conceptual model uses explicit representation of data and meta-data, allowing software engineers to describe evolution of system specification (e.g. evolution of business rules).

The principal benefits of the proposed formalization can be summarized as follows: the different views on a system are integrated in a single formal model. This allows one to define rules of compatibility between the separate views, on syntactical and semantic level. Using formal manipulation, it is possible to deduce further knowledge from the specification. The faults of specifications expressed using a user-friendly notation can be revealed and removed using analysis and verification techniques based on the formal kernel model.

The principal difference between this model and other object-oriented formal models is that this formal model integrates both of the levels in the architecture of the conceptual framework for modeling notations into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels. This integration is particularly useful for the description of system evolution, for example, it is possible to formally specify how a modification made to a model impacts on the modeled system.

Most work in evolution of the system specification address the problem of structural evolution (e.g. change of the inheritance hierarchy, adding a new class) but do not deal with behavioral evolution (e.g. change the way an object reacts to a message). By animating the transition system defined by SpecMMM it is possible to simulate the behavior of the specified system and also it is possible to analyze the behavior of the system after evolution of its specification (either structural evolution or behavioral evolution or both).

References

[Breu et al. 1997] R.Breu, U.Hinkel, C. Hofmann, C.Klein, B.Paech, B.Rumpe and V.Thurner. Towards a formalization of the UML, In ECOOP’97 proceedings, LNCS 1241, Springer, June 1997.

[France et al. 97(a)] R.France, J.Bruel and M.Larrondo-Petrie. An integrated object-oriented and formal modeling environment, Journal of Object Oriented Programming (JOOP), 1997.

[France et al. 97(b)] R.France, E.Evans and K.Lano, The UML as a formal modeling notation, In Kilov, Rumpe and Simmons editors, OOPSLA’97 Workshop on Object-oriented Semantics, TUM-I9737.

[Goldsack and Kent 96] “Formal Methods and Object Technology”, Chapter 3: LOTOS in the Object-oriented analysis process. Editors S.J. Goldsack, S.J.H. Kent. Serie FACIT, Springer-Verlag, 1996.

[Klar and Geisler 97] Marcus Klar and Robert Geisler, "A metamodel for object-oriented systems", Fraunhofer Institut fur Software und Systemtechnik ISST, Berlin. Technical Report.

[Moreira and Clark 94] A.Moreira,and R. Clark. “Combining Object_Oriented Analysis and Formal Description Techniques”, In 8th ECOOP proceedings. LNCS 821. 1994.

[Overgaard 98] Gunnar Overgaard, A formal approach to relationships in the UML, Workshop on Precise Semantics of Modeling Notations, ICSE’98, Japan, April 1998.

[Pons 98] C.Pons. Formalizing object-oriented modeling techniques: a comparative analysis (in http://sol.info.unlp.edu.ar/~cpons/compara.html)

[Pons et al 98] C.Pons, G.Baum,M.Felder.’Integrating object-oriented model with object-oriented metamodel into a single formalism’. Second ECOOP Workshop on Precise Behavioral Semantics, 1998. (extended version in http://sol.info.unlp.edu.ar/~cpons/)

[Rational 97a] Rational. UML Notation {version 1.1. Technical report, Rational Software Corporation, September 1997.

[Rational 97b] Rational. UML Semantics {version 1.1. Technical report, Rational Software Corporation, September 1997.

[Waldoke et al. 98] S.Waldoke, C. Pons, C.Paz Mezzano and M. Felder, A Formal Approach to Practical Object Oriented Analysis and Design, Proceedings of ASOO, Buenos Aires, 1998.

[Wieringa et al.94] R.Wieringa, W.de Jonge and P.Spruit, “Roles and dynamic subclasses: a modal logic approach”, In ECOOP’94 Proceedings, Springer-Verlag, 1994.

[Wieringa and Broersen 98] R.Wieringa and J.Broersen, Minimal Transition System Semantics for Lightweight Class and Behavior Diagrams, Workshop on Precise Semantics of Modeling Notations, ICSE’98, Japan April 1998.

Jens Coldewey
Coldewey Consulting
Uhdestr. 12
D-81477 München
Germany
Tel:
+49-89-74995702
Fax: +49-89-74995703
email: jens_coldewey@acm.org

Architectures for Flexible Product Support

Submission to OOPSLA ‘98 workshop
“Meta-data and Active Object Model Pattern Mining Workshop”

This paper is the very start of a pattern language. It contains three proto-pattern sketches that describe the basic alternatives you have when you try to bring a meta-system into life. I have neither looked for known uses by now (although there should be plenty of them) nor did any of the tough reviews a good pattern should have. So it’s not much more than a start.

Configuration

Thumbnail

Sometimes it is sufficient to describe the flexibility of a business system with a set of parameters while the processing is quite stable, therefore implement the flexibility by providing configuration data rather than developing a complex meta-model.

Example

Not too long ago, the life insurance business in Europe was highly regulated by law. The customers paid a monthly fee onto her or his account and the insurance company guaranteed to invest the money as good as possible. The only flexibility the contracts had was the amount of money you had to pay per month and some options, such as risk coverage. The products were not part of the competition. Rather the insurance companies competed with their investment strategies. The contracts themselves were described with a few numbers, such as monthly sum, duration of the contract and age of the insured person.

Problem

How do you provide enough flexibility in your product when the behavior is not subject to changes?

Forces

The more flexibility you provide, the more complex your system becomes, ...
... but there is always a risk that the legal situation or the company’s strategy changes, so lack of flexibility may come up and haunt you later

Speed of development often is high when an experienced team of domain programmers have to build a system without too much flexibility, ...
... but in the longer term the time-to-market for new products may be an important factor in competition.

The product configuration should need a minimum of programming activities – ideally the domain experts should be able to implement new products without help from IT personnel, ...
... but often changes to the products are critical to the economical success of the company, therefore the effect of every possible change should be well-understood.

The more domain knowledge the system reflects, the easier it is for maintenance programmers to understand it five years later, ...
... but hard coded domain knowledge is slow and expensive to change if the domain changes and every change may blur the initial architectural vision of the system.

Solution

Identify the data that determines the products and store it as configuration data. Use this configuration information rather than hard coded data to process the product.

Consequences

Configuration is easy to understand and easy to use. It provides flexibility in all the aspects you have cared for during analysis and design – but nothing beyond. If the business calls for new structures in the products or different processing you may easily find yourself building a new system.

An experienced team of analysts, designers and programmers will be able to implement a configurable system pretty fast, as long as they don’t have to cope with configurable structure or highly flexible functionality. Both of these issues may turn the project into a nightmare.

Because most business systems rely on (relational) databases, it is easy to provide a few forms to configure the system with effective access control. As long as the configuration only affects domain level parameters, the consequences of changes are pretty obvious to domain experts. However, if you start to configure structures or processes, the configuration data becomes extremely complex pretty soon. You usually can’t expect domain experts to understand the complex data structures needed to provide structural flexibility – according to my experience you can’t even expect most IT experts to understand them.

The models of configurable systems are often quite close to the “plain” domain model. Therefore it usually is easy to identify the code you have to change to implement any changes. However, since the technique allows structural flexibility only to a very limited extent, every additional product structure expands the system. Thus configurable systems tend to expand only slightly slower than hard coded systems. After several years you may still end up with patchwork.

See Also

??? Paper of Brian & Joe ???

Full Reflection

Thumbnail

Often time-to-market is extremely important for the success of a new product idea, while technical aspects, such as performance or ergonomics may suffer, therefore build a reflective system to support maximum flexibility.

Example

As more and more regulations on European life insurances were cancelled, the companies started with a bunch of new product ideas. They combined life insurance products with classical investment product, such as stock trusts, or they developed “total care” products that aimed at certain client groups rather than at a certain type of insurance. Being able to offer the first “Student Package” covering car, health and life insurance became a major competitive advantage, being able to react on such a challenge fast became a question of survival.

With the exploding number of products it became more and more important to have laptop based sale systems that assist the brokers in consulting the clients. These systems should be able to support as many different product structures and behaviors as possible without any code change.

Problem

How do you provide a maximum of flexibility without code modifications when performance is not a crucial issue.

Forces

The more abstract the implemented model of the system is, the more flexible it is, ...
... but abstract systems are hard to understand if you just have to make a minor change to it.

Abstract systems often result in very fast development, because you don’t have to understand every detail of the domain, before you start design and programming, ...
... but too much abstraction may lead to loosing the focus of business needs, because the team fights with technical issues rather than with domain issues.

Time-to-market is crucial for most domains, ...
... but runtime performance also becomes the more important the higher your sales figures for a certain product are.

Solution

Develop a meta system where product information is used to control all aspects of the systems: parameters, structures, behavior, user interfaces, and so on. Provide a user interface to change the meta information.

Consequences

A meta-system provides maximum flexibility
. With techniques as described in [JOa98] you can define any product you whish without programming. However, the object model doesn’t have too much resemblance to the domain model, it is a world of its own. So a programmer who has to change something in this system in five years may have quite a hard time to understand what is going on. I don’t know, whether this really is a problem, because at least new business requirements should not affect the system in the future, but you should at least waste a thought on this possible drawback.

Building a Full Reflective system is a good choice for incremental development. Because the system is very flexible you don’t have to bother too much about understanding every detail of the domain. Still, there is a significant danger that you miss important domain issues because they seem not to be relevant to the meta approach.

One important aspect joins the game when performance or mass data is important. In a reflective approach the system ideally has no notion of the domain but retrieves its behavior by interpreting the meta information. This interpretation process needs additional resources, which becomes less and less important as processing resources become cheaper and cheaper. However, if you want to store the data in a database, you have to deal with slow disk drives rather than with fast processors and memories. You usually get the best performance results when you take domain knowledge into account during tuning [KCo97]. Meta-data Compiler (page 6) deals with this issue.

See Also

Reflection is discussed in detail in [BMR+96].

Plugable Component

Thumbnail

Introducing a new product often is considerable effort so that it is acceptable to install new products on the affected systems with a installation procedure as simple as possible, therefore encapsulate product descriptions into Plugable Components that have enough meta-information to provide a product independent interface while the interior design of the component may be tuned to the concrete product.

Meta-data Compiler

Thumbnail

Meta-data interpreters often have not enough performance to work under high load requirement, therefore use a special compiler that translates the meta model into tuned code and database layouts using standard optimizing techniques as appropriate.

Acknowledgements

Thanks to Dirk Riehle who provided significant input during a spontanous coffee break in Zürich. I’d also like to thank my clients at Generali and Ruth Leuzinger at Zürich Insurance for all the fruitful discussions I’ve condensed in this paper.

References

[BMR+96]
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture – A System of Patterns, Wiley, 1996

[JOa98]
Ralph Johnson and Jeff Oakes: The User-Defined Product Framework; 1998 (available via the authors johnson@cs.uiuc.edu or joakes@itthartford.com)

[KCo97]
Wolfgang Keller, Jens Coldewey: Relational Database Access Layer in: Robert Martin, Frank Buschmann, Dirk Riehle: Pattern Languages of Program Design 3, Addison-Wesley; 1998

Flexible form management with dynamic object model
by: Wolf Siberski

The GEBOS series of banking projects developed at RWG in Stuttgart, Germany, which currently consists of about 3000 classes, includes a framework for form definition and management. This framework is based on a domain value type framework which allows easy addition of new domain specific value types to the system.

One of the goals of these frameworks is to make it possible to add and change forms between product releases. Therefore, both domain value types and forms are described in a dynamic

Domain values

The domain value framework allows the dynamic definition of new value types. There are about 30 static value types (e.g. alphanumeric key, date, amount, account number). Dynamic types are created by "configuring" one of these static types. The following properties can be defined:

· Type name

· Validity checks:
- valid ranges (for numeric fields)
- valid characters (for alphanumeric fields)

· Appearance of the type at the user interface:
- Lettering of an input field for that value
- formatting instructions for input and output
- plain text for values of numeric keys

· Default value

· Plain text for values of numeric keys

These descriptions are stored in a value type repository which generates configuration files from the descriptions. These files are read at program startup. All values in the system are created by their name. The value objects delegate validity checks etc. to singletons which use the information in the configuration files for their respective services. Today we would use the type object pattern for this purpose.

Forms

In our domain many forms are used which have to be changed often due to changed business or legal requirements. Therefore the form is not

A form description consists of the following parts:

· List of values on the form (i.e. input and output fields)

· Additional checks:
- dependency checks (e.g. if account number indicates a savings account then the resulting balance must not be less than zero).
- completeness check (are all compulsory fields filled in)

· Formulas for automatic calculation of field contents

· Layout of the dialog on screen

· Layout of the form for printing (as RTF file)

· Formatting rules for converting the form content to data for a mainframe transaction

Products

One area our system supports is sale of investment products (savings plans etc.). A product consists of the following parts:

configuration information for a special product calculator (calculates increase of the invested capital)

Forms which have to be completed, printed and signed when selling the product.

Transaction forms which have to be filled and sent to the mainframe.

These products are also described dynamically and can be updated between product releases.

The input of values which appear on more than one form (e.g. customer name and address) is taken over to the other forms automatically. That also ensures consistency between all forms.

Design

(just begun, very incomplete)

Domain value framework

The client of the domain value framework just sees the value classes and the value factory. Most often the interface of the value superclass suffices. If special operations are needed (e.g. computation of the interest) a downcast has to be performed.

For creation of the value object the Product Trader pattern is exploited.

The value objects delegate validity checks, lettering service, etc. to domain value services.

Form framework

Known Problems

· What to do with persistent values/forms/products if the type information changes?

· May hard coded program logic depend on "soft" coded properties of special dynamic types?

Dynamic Database Access Patterns
Author: James Long
Date: September 1, 1998
Email: long@fpi.com
Phone: 970-490-1408
Fax: 970-490-6021
Introduction:

The following patterns reflect some of the lessons I’ve learned as chief architect of Object Products' Organic Architecture (OA). The OA is a two level dynamic framework used to develop healthcare applications. The first level is a C++ whitebox framework that is used to develop dynamically accessible components and services. The second level is a black box framework for composing applications from domain models. Domain experts use the application framework to create models of domain objects, use cases, workflows, etc. These models are stored in an OODB, and are themselves the final application. The domain model also acts as the database schema for storing application instance data.

The most notable omission from these patterns is their lack of a Known Uses section, which is one of the reasons I didn’t submit them to PLoP. I’m hoping that through this workshop I can either complete these patterns, or invalidate them. My company has staked its life on evolving applications and the Organic Architecture. We could have used a pattern language for application evolution 6 years ago, but better late than never.

Dynamic Database Access

Context

You’re building an enterprise wide corporate information system based on a centralized database and distributed clients. The system will contain vast amounts of data, and is required to remain operational for a minimum of 10 years.

Problem

The business model as captured by the database schema must reflect the ever-changing nature of your business. But, technology is also changing, and we want to take advantage of advances as they become available. The rate of change of the business model is unrelated to the rate of change of technology.

Forces

· Microsoft completely upgrades its development systems every 18 months, and provides forward compatibility and support for only a single upgrade level. This means that within 3 years any system built using this technology will be obsolete and unsupported.

· Most commercial software customers require systems to be implemented using Microsoft technology.

· Your developers can upgrade your system every 6 months. To build a new system based on new technology requires a minimum of 18 months.

· Your business model changes monthly. Your developers don’t really understand your business model, and they are not the best ones to change it.

· The typical tenure of a CIO is 18 months to 3 years.

Solution

Decouple the client applications that provide access to the database from the business model that is stored in the database. Do this by dynamically accessing the database schema each time a client application is run. Design the client to operate based on the model it finds in the database. Do not hard code class, attribute, relationship or operation names directly in the client application. Rather, read the schema to see what is available, and present the application’s end user with access and control of the business model based on the structure and content of the model itself.

Resulting Context

You are now free to change the business model without having to re-write or re-compile code. Business experts can take control of the business model. New technical functionality can be added incrementally as it is developed without requiring changes to the underlying business model. The technology used to implement client applications is free to change independently of the business model.

Rationale

Stewart Brand, in his book How Buildings Learn, presents the idea that buildings are composed of various systems, and that these systems change at varying rates. Brand proposes that buildings which survive the test of time and continue to be beautiful and functional are composed in such a way that the various systems are free to change at their own rate. Much of this is obviously apparent. A brick house, where Structure and Skin systems are the same, is less apt to receive a facelift than would a house built of wood.

Software systems, like buildings, are composed of a series of systems, each with its own rate of change. Languages, operating systems, support libraries, tool kits, editors, legacy code, and local code under development are but a few examples of the various systems within a piece of software. For software systems to evolve gracefully we must learn to recognize the spheres of change within the system, and make a conscious effort to keep them decoupled.

Related Patterns

Logical Schema Stored As Data
Schema-Aware Proxies

Logical Schema Stored As Data

Context

You are implementing a large client/server database system in which the client application dynamically reflects the business model as it is represented in the database schema.

Problem

You want non-programming domain experts to build and maintain the business model in the database. The Database Management System (DBMS) you are using does not provide a very rich set of modeling constructs. You can define classes, create attributes and constrain those attributes to a few simple types. You can associate objects through relationships and assign those relationships limited cardinality constraints. But you have no way of expressing the more complex aspects of the model. The DBMS supports operations as callbacks to client-registered methods, so you can’t implement new triggers, constraints or more complex operations without resorting to writing code. You would like to be able to model construction and destruction constraints, to define edit and display characteristics of attributes, and to support complex relationship semantics such as Role or Shared Ownership, but these also require programming.

Forces

· Domain experts manage the Business Model, and they need to be able to fully specify business constraints without writing code.

· Your developers are busy with the next release. Having them also making changes to the old release dilutes their efforts, and causes a configuration management nightmare as the baseline system changes from beneath the new release.

· You are trying to maintain a level of database independence. For example, you prefer to use an ODBMS, but you have political pressure to support Oracle’s object model. The Oracle object model doesn’t support the more esoteric capabilities of OO, such as polymorphism and inheritance. That's a model you want to stay as decoupled from as possible!

Solution

Construct your own schema as instance data in the database. Rather than accessing the Physical Schema provided by the DBMS vendor you will access this Logical Schema that you have created in data. Design the Logical Schema to support your approach to domain modeling. Construct the Logical Schema schema such that the Logical Schema instances form a hierarchical name space with a single access point

Build tools to support the logical schema. There are several options here. You can build tools that automatically create the logical schema from the physical schema, and then let you customize the logical schema. This approach requires that you use DBMS schema tools for creating the physical schema. A better approach is to develop a Model Editor, which provides direct control over the logical schema for your business domain modelers. Have changes to the logical schema be automatically reflected in the physical schema.

Resulting Context

You now have a system that provides a rich modeling environment. The logical schema can be designed to provide the domain modelers with any and all modeling constructs needed to support the modeling process. The client applications are not limited to the information provided by the physical schema. The domain model contained in the logical schema is platform independent. Your logical schema can continue to evolve to embrace richer and more complete modeling constructs.

Rationale

In some ODBMS’s, such as MATISSE, you can actually modify the meta-schema. This allows you to add direct support for more complex modeling constructs. But, this is highly non-portable. In embracing change we look to minimize contact with external systems. Implementing a logical schema as data is very portable, and is preferred to meta-schema modification.

Related Patterns

· Rule Server Maintains Integrity

· Schema-Aware Proxies

Concurrency Support Through Optimism

Context

You are implementing a large client/server database system in which the client application dynamically reflects the business model it finds in the database. The system provides enterprise-wide access to essential corporate information. This information is primarily accretive. The system does not require high transaction volumes, such as a reservation or online banking system.

Problem

In an enterprise-wide information system, such as either a business or clinical decision support system, you must provide uninterrupted access to system data. If you lock data for update you can possibly deny other users access to essential information. If the billing department is updating a patient’s insurance claims an ER physician could possibly be blocked from that patient’s medical information until the billing transaction was completed. There are ways to organize the schema to minimize this type of interaction, but with pessimistic locking it can not be completely avoided.

Forces

· A typical system user will perform many more reads than writes. And there is no obvious indication as to which data is apt to be modified.

· The inability to access system information in a timely fashion, such as drug allergies or HIV information, could be the cause for serious legal actions.

· Most information is accretive. You most often create new information rather than modifying old information. In a clinical information system you don’t over-write an old clinical measurement, such as last weeks blood pressure. Instead, you write new information to the system, and associate the new information with other existing information through object relationships.

· The order in which multiple updates occur to a single piece of data is irrelevant. If two clinicians are accessing the same patient and one clinician changes the patient’s last name to Jones and the other changes the patient’s last name to Smith, it really doesn’t matter which name becomes persistent last. (As long as we provide atomic transactions, we won’t end up with Smones or Jith!)

Solution

Implement an optimistic transaction scheme for database updates. Always read data with no locks. If the DBMS forces locking then simply read the data and then immediately release the locks. Instead of directly modifying this dirty data on the client you will maintain a change record. A change record can be implemented by storing both the new state and the old state, or as a parameterized operation against a specific object property.

With this style of optimism you perform a transaction by specifying a group of atomic change records to be applied. Only for the brief duration of the transaction are the various affected objects locked. Once an object is locked the property to be modified is compared to the dirty data in order to detect collisions. Collision detection can be ignored, can cause a transaction to fail, or can succeed by performing data merger rules. Transactions can be performed on the client, but are better handled on a server.

Resulting Context

Except during the brief moment in which a transaction is attempted all persistent data is always accessible to the client. The final system will be more complex in order to deal with unresolvable transaction collisions, but the important information maintained by the system is always available for access.

Related Patterns

· Transaction Processing On Server.

· Hot Updates Broadcast by Server.

· Merger Logic Resolves Collisions.

Transaction Processing On Server

Context

You are implementing a large client/server database system in which the client application dynamically reflects the business model as found in the database. You’ve enhanced your ability to properly model the business domain by extending the database meta-schema through the use of a Logical Schema. And you’ve improved data availability by adopting an optimistic transaction policy.

Problem

Client transaction commits require several complex steps. Locks must be established on data to be modified. Constraints must be checked and collisions detected. Permissions must be verified. And finally, triggers and operations may need to be executed both before and after transaction commit. These triggers and operations may involve some larger set of objects than were in the original transaction. These objects must be fetched, locked, constrained, etc. The time in which some set of data is unavailable to other system users must be minimized.

Forces

· There are thousands of distributed clients and possibly hundreds of active clients at any one moment.

· Some client machines are extremely under-powered and slow, while others may be extremely fast. Transactions must run equally well on all machines.

· A single transaction may have intermediate states which are invalid. Transaction triggers may indirectly access objects which the user does not have permissions to access directly.

· The DBMS provides a Client Stub that you can link into your client application to provide remote communication. It easier to just use this stub they provide.

Solution

Implement a Transaction Server application which can be run on the same machine as the database. This server will commit transactions on behalf of the clients. Clients submit change records to the server to request specific modifications to specific objects. The server locks objects, checks constraints, and performs operations and triggers.

Instead of connecting clients directly to the database through bindings provided by the DBMS vendor you will connect via the Transaction Server. The Transaction Server will connect to the database through the vendor provided bindings, and then will pass-through much of the database access API directly to the client applications. The server acts as a wrapper on the database, isolating the specific database binding from the client applications.

Resulting Context

You now have system in which the client applications are isolated from the DBMS. Requests to read and write objects are handled by the Transaction Server. Performing triggers and operations remotely has reduced network traffic. Slower clients perform better by offloading some of their work. Your system must now handle its own communication protocol, but this prevents you from being trapped by the limitations of any particular DBMS vendor.

Rationale

A Transaction Server does more than just speed up transactions. It helps to isolate vendor specific database API and makes your system more portable. It can be used to perform remote query processing. And, as a single point of access to the database it provides an ideal gating point for security and logging services.

Most important, it can help in maintaining the integrity of your data. The database contains the reality of the application domain. A transaction server maintains the integrity of that reality independent of the client applications. The rules for maintaining integrity are established by the Logical Schema, and are enforced by the Transaction Server. If the code for maintaining integrity is a part of the client application, then there’s always the chance that an outdated client can corrupt the database.

Related Patterns

· Server Enforces Security.

· Stateless Database Connections.

· Cache Remote Objects Locally.

Schema-Aware Proxies

Context

You are implementing a large client/server database system in which the client application dynamically reflects the business model it finds in the database. You’ve enhanced your ability to properly model the business domain by extending the database meta-schema, either directly or through the use of a Logical Schema.

Problem

Your application code is primarily concerned with the display and manipulation of business object instances that it retrieves from and stores to the database. But, everyplace where your code references these dynamic persistent business objects you must add logic to consult the schema to deduce rules about the business model. As you access each property of a persistent object you must dynamically determine its type and structure. If the property is a relationship, you must determine this same information on every successor objects.

Forces

· Dynamic code is hard to write. There is a lot of overhead in building a system that examines itself in order to figure out what to do.

· Accessing object relationships with high cardinality can often greatly degrade system performance.

· Different databases support different access strategies depending on how attributes and relationships are physically stored. Exposing this sort of detail breaks encapsulation, but hiding it can make a system unreasonably slow.

Solution

Create a Proxy class on the client that has the ability to dynamically reflect any specific persistent object in the database. Provide an API on the Proxy to dynamically supply information about the object, its attributes, relationships and operations. The Proxy is responsible for maintaining the integrity of attributes and relationships. It enforces typing constraints, relationship cardinality, and marshalls arguments for object operations.

Wrap all database operations within the Proxy class. Implement a lazy access policy for Proxy properties. Only fetch attributes and relationships that are actually accessed. Let Proxies manage the change records for modifications that are made to them. Provide a standard API on Proxy for object update, rollback, creation and deletion.

Resulting Context

Your client system now deals with all persistent objects as instances of a single client class. Database operations are hidden behind the Proxy wrapper API. The remainder of the client code deals with concrete instances and a known API.

Related Patterns

· Propagation of Local Changes.

· Dynamic Type System.

Meta-programming in a Flexible Component Architecture

Eliot Miranda

ParcPlace division,

ObjectShare, Inc.

eliot@parcplace.com

Abstract

Traditional component technologies require that components are "exact fits" with the context in which they load. This restriction leads to a number of problems, primarily a fragmentation of components in situations where logical components overlap, and the consequent proliferation of components results in a maintenance problem. We present a Smalltalk-80 component technology which lifts the above restriction. This technology is called Parcels and is implemented in VisualWorks 3.0, the latest release of VisualWorks from ObjectShare, Inc. The technology relies on a number of meta-programming techniques, essentially the ability to manipulate classes and methods, without which the implementation would be infeasible. Hence the paper demonstrates a practical application of meta-programming to solve an every-day programming problem, that of building re-composable systems.

1. Introduction

1.1 Component Technologies

There is no widely accepted definition of "component", indeed, in the object-oriented programming community it is hard to distinguish between "object" and "component". One important use of component technology is in composition of linguistically heterogenous and possibly distributed systems as is supported by the two major language-independent binary object models COM [Brockschmidt95] and CORBA [OMG91]. But for the purposes of this paper we consider component technologies that are vehicles for transporting objects and their behaviour from place to place. From this perspective component technologies are an essential part of much of current programming practice. They provide a medium and a mechanism for upgrading, distributing or selling software; a means of physical sharing to reduce disc and memory footprint, and of logical sharing to simplify updating of multiple programs, or incremental updating of a single program.

Such component technologies take a number of forms such as source files, binary programs, binary shared and unshared libraries, Java class files [Sun96], and, in the OO world, many "pickling" formats [Vegdahl86], [ParcPlace89], [Nelson91], [Ungar 95], [Sun97]. {footnote: a "pickling" format is a recursive grammar for defining graphs of objects. An object graph is traversed and a stream of tokens in the grammar is produced that describes the graph. This is the "pickled" representation of the graph and is typically stored in a file. A parser for the grammar can be used to reconstruct an equivalent graph, "unpickling" the objects there-in} A common feature of all these formats is that at time of use all prerequisites of a component must be present for the component to be successfully used. For example, a Java class file can only be loaded if its superclass is already present and has a definition that matches that expected by the class file, and a shared library linked against other shared libraries requires that those other libraries are available. {footnote: we use available rather than loaded since many shared library implementations automatically load and link on first use of a definition in an unloaded library}
One could consider some shared library implementations to be an exception to this. A number of systems allow a program to use a shared library without loading other shared libraries the former expects. However, if the program invokes code in the shared library that attempts to invoke code in an unavailable library a run-time error occurs and the program terminates.

1.2 The Component Maintenance Problem

As described above there are good reasons for decomposing systems into components. The requirement that components have their prerequisites present, that components are an "exact fit" with the context in which they are used, becomes a problem the more one decomposes a system. The requirement tends to increase the number of physical components, in the limit to the square of the number of logical components. For example, imagine a set of extensible interactive tools in the form of a system of components. Imagine one wishes to extend the set of tools with drag-and-drop functionality. If each of the tools is to be loadable separately then at a minimum one will require a base drag-and-drop component, and one component that adds drag-and-drop-ness to each individual tool.

Another source of proliferation is decomposition of components that contain circularities. Imagine two classes that have methods that refer to each other. If one wishes to componentise these independently one will require four components, a) the parts of the first class that make no references to the second, b) the parts of the second class that make no references to the first, and c) the methods of the first class that refer to the second and d) the methods of the second class which refer to the first.

Proliferation is problematic not just because there are more physical components. Computer systems are good at dealing with aggregates. What is problematic is the updating of a number of interrelated components. For example, in the drag-and-drop case above delivering an updated tool component that has one or more changed class definitions requires that one at least discover if the associated drag-and-drop component is affected, and if so deliver an updated version of that component too.

In Section 2 we present a Smalltalk [Goldberg83] component technology called "Parcels" which addresses these problems. The implementation of Parcels relies heavily on meta-programming, of which Smalltalk has a long and illustrious history [Foote89].

1.3 The Component Composition Problem

To be usable, a system of components often requires a number of composition mechanisms for elements of the system affected by multiple components. One classic example is global menus that provide the user with a means of identifying and launching available tools. If tools are loadable from components there must be some mechanism by which the menu can be extended as each tool is loaded with an entry that launches that tool.

Traditional static menu definitions, either in the form of configuration files or code definitions suffer from being fixed, and may suffer from a combinatorial explosion. One approach is to define a menu containing all possible tools and mark menu items invalid unless the corresponding tool is loaded. Another approach involves maintaining one definition of the menu for each possible combinations of tools. The correct definition must be selected and installed as tools are loaded and unloaded. These static approaches are clearly deficient. Hence the system must provide some calculus for defining a menu from a set of partial definitions.

In Section 3 we present such a calculus. This calculus is interesting because its elements are not above the programming language, but instead are the methods that launch tools. And again its implementation relies heavily on meta-programming.

2. Convenient Component Technology
2.1 Parcels

Clearly, component technologies which can help reduce the proliferation of components can reduce the maintenance burden, potentially from order N squared to order N. Parcels are such a technology.

A Parcel is a "pickled" format for arbitrary Smalltalk objects with particular support for Smalltalk classes and methods. The format is carefully designed for very high performance unpickling, but the grammar and its performance are not the concern of this paper. For our purposes it suffices that parcels can store code from a single method up to an arbitrarily large collection of classes and methods, their associated objects and their source code. A Parcel exists in three forms, "under development", where it merely records which classes and methods are in the parcel prior to pickling, "pickled", in a byte stream (typically a file) ready for loading, and "loaded" (after being unpickled from a byte stream). A loaded parcel also records what classes and methods were unpickled from the passive form so it is also "under development", and may be modified and re-pickled.

For the purposes of later exposition we need to describe some of the Parcel format. Parcels contain "class imports", references to required classes, either of objects in the file or superclasses of classes in the parcel, and class definitions, which define new classes. Both class imports and class definitions comprise the class's name, its format, {footnote: a class's format defines the layout of its instances, i.e. if instance variables are bytes or "pointers" (references to other objects) how many named instance variables, and if there may be indexable instance variables} and all named instance variables defined by the class. In addition a class definition contains a reference to its superclass, which may be a class import or another class definition in the parcel. Parcels also contain ordinary objects, which are stored as either a sequence of bytes for byte-format objects or as a sequence of object references for pointer objects. Object references are merely references to other objects in the Parcel. {footnote: you may have noticed that the object's class is absent, this is because all instances of a given class are stored consecutively, preceded by the object's class. This batching together of instances of specific classes is one of the major reasons parcels unpickle quickly.}

Armed with this much of the format we're ready to address the convenience features of parcels. The Parcel loader implements three facilities which provide the technology's convenience features, shape change, partial loading and method overriding.

2.2 Shape Change

Shape Change is the ability to unpickle objects whose pickled format differs from the format defined by their class in the loading context. Many pickling systems support shape change. It is an essential feature if one expects pickled objects to be have a long lifetime because inevitably classes will get redefined. Having to re-pickle any files whenever classes change is another difficult maintenance task and infeasible when pickled files are used across organizations.

Shape Change in Parcels is trivially implemented using meta-programming. An object in a parcel may either be an instance of an imported class, or of a class defined by the parcel. In the latter case the class must be rooted in some imported class. A class import includes the class's name, which is used by the parcel loader to lookup the current definition of the class in the loading context. What happens if the class is not found will be covered in the next section.

A class import includes the format and instance variables of the imported class at the time of creation of the parcel. This information is compared with the current definition. If the format has changed from byte to pointer or vice versa loading is aborted, but if the named instance variables have changed the loader builds the permutation from the stored instance variables to the current instance variables. The instance variables present in both the pickled and the current versions of the object are then filled-in, and the extras skipped and discarded.

Note that this scheme relies on the fact that Smalltalk classes maintain their format and the order and names of their instance variables at run-time. Note also that without the instance variable information in the file it would be impossible to know which instance variables to skip if the format has changed and hence impossible to continue to parse past the object. {footnote: In subsequent releases of the parcel scheme we intend to extend the shape-change scheme, allowing user-defined code to guide the permutation from stored format to current format. This can allow the system to handle format changes between byte and pointer formats, and other transformations, as required.} Essentially, Smalltalk objects both in a parcel and in the system are self-describing, from which their longevity derives. "I am thus therefore I persist".

A further aspect of shape changing occurs when unpickling a class whose prerequisite superclass(es) have changed format. The Smalltalk compiler maps references to named instance variables into integer offsets so that code that uses instance variables merely indexes an object. An object's named instance variables can be accessed via the reflection methods instVarAt: index and instVarAt: index put: anObject. instVarAt: is used to extract the state of an object during pickling, and instVarAt:put: is used to fill-in the state on unpickling, hence a pair of methods serves for all classes of normal object. Hence when a class whose superclasses have changed format is unpickled the offsets of instance variables in the methods it defines must be adjusted to refer to their new locations.

VisualWorks already includes a framework for adjusting instance variable offsets which is also used when interactively redefining a class in the programming environment. This framework is an extension of the meta-circular interpreter which is used to implement many important features of the environment. The meta-circular interpreter is defined by the classes InstructionStream and InstructionClient. InstructionStream knows how to interpret the Smalltalk bytecode set, and streams over CompiledCode instances. InstructionClient is an abstract class that defines the protocol required to execute the bytecode set. Three of its subclasses, Context, MethodContext and BlockContext define method and block activations, and serve to define the semantics of the Smalltalk bytecode set, to implement the single-stepping facilities of the debugger, and to provide reflection into activation records, which again is used by the debugger to display the state of halted programs.

One of InstructionClient's subclasses is CodeRegenerator. It is used to recompile code when class definitions change. Instead of compiling from source CodeRegenerator is used to make a single interpretive pass over each method and block needing recompilation. It re-interprets each bytecode and produces an equivalent method where instance variable offsets and references to globals have been suitably redefined. This is much faster than recompiling form source, and also means that redefinition can happen in the absence of source. Clearly it depends on the fact that Smalltalk code is also self-describing. The Parcel loader uses a new subclass CodeReaderCodeRegenerator that only adjusts instance variable offsets. This is used to redefine the methods of classes whose format has changed.

2.3 Partial Loading

Partial loading is the ability to load a parcel which contains either classes whose prerequisite superclasses are absent loading context or methods on classes that are absent. These classes and methods are unpickled but not installed in the system. Instead they are kept to one side until subsequent parcel loads do define the required classes, at which time they are edited into their rightful place class hierarchy and installed into the system. Note that uninstalled classes must be present as objects during the loading process for two reasons, a) because classes themselves participate in the parsing of the file, allowing classes to add any additional information they may require, and b) because instances of the classes may be present in the file and the classes must be present to instantiate these objects.

The implementation of partial loading of classes is as follows. When the loader fails to lookup a class from a class import it substitutes an object, an AbsentClassImport, that stands-in for the absent class. It stores the format information for the class stored in the class import and, because superclasses are responsible for parsing their subclass's definitions, will parse any immediate subclasses in the parcel. When an AbsentClassImport is asked to parse a subclass it creates a substitute superclass, an AbsentClassImporter, passes on the format information and forwards the parsing task to the AbsentClassImporter. The AbsentClassImporter's metaclass, an instance of AbsentClassImporterMetaclass, defines instance variables used to maintain the information necessary to later stitch-into the hierarchy the subclass of an absent class. This includes the class's real superclass's name, the binding used to refer to the class, and any instance variable names defined by the absent superclass.

The AbsentClassImporter then creates a "normal" subclass which defines all the instance variables defined by the parcel definition and methods. The subclass's metaclass holds the necessary additional state for subsequent editing, hence the class methods need their instance variable offsets adjusting so that this additional state is not confused with any class instance variables. Hence the newly unpickled class is "fully functional", it may be instantiated, hence its instances can be unpickled from the file, and it may parse subclass definitions. Because it's class inherits from AbsentClassImporterMetaclass, it also ensures that its subclasses maintain the extra editing information required for subsequent installation.

Instead of installing these rootless uninstalled classes in the system the loaded parcel holds onto them. After each parcel load, all other loaded parcels are notified. Any parcels that have uninstalled classes query them to see if installation is now possible and ask those that can to install. Code in AbsentClassImporter then performs the necessary editing. The class is hosted underneath its correct superclass with the correct sequence of instance variables. This is done by the ClassBuilder, which is responsible for normal redefinition of classes during development. Since an absent class subclass is "fully functional" ClassBuilder is able to redefine its methods and update its instances just as it would if it were performing a normal class redefinition. The class's binding is then installed in the system, hence making the class available for use.

The implementation of partial loading of methods is trivial. Uninstalled methods are held by the loaded parcel. When the classes in which they should reside are loaded the methods are simply installed.

When notified by the loader, each parcel answers if it actually installed any uninstalled classes or methods, and the loader continues to notify parcels of the arrival of new classes until a fixed-point is reached, i.e. until every parcel reports that it did not install any code. Hence the system can handle mutually recursive parcels. Imagine a class graph A inherits from B inherits from C inherits from D. One may construct two parcels, P1 containing A and C, and P2 containing B and D. Loading P1 installs no code, but a subsequent load of P2 installs first D, then C, then B and finally A, provided of course that D's superclass is present

2.3 Method Overriding

Method Overriding is the ability to override a method definition on parcel load and to revert to the previous definition on unload. Occasionally a Smalltalk component may have to redefine existing methods to function correctly. A real-world example is an inter-object event service component that needs to redefine the methods Object>>#release and Object>>#become:. Were it not possible to redefine these methods the code could not be expressed as a component but would have to be included in the base system. Were it not possible to revert to the previous definition on unload, the component could not be unloaded, as the redefined versions of Object>>#release and Object>>#become: can only function correctly with the rest of the component.

While method overriding can be used to resolve conflicts it does not adequately address the resolution of orthogonal conflicts on methods. The next section presents a scheme that is able to resolve analogous conflicts within a narrow domain. In Section 4 we return to this issue in more detail.

The implementation of method overriding is very simple. When parcels install extension methods, methods on class imports as opposed to methods on classes defined by a parcel, they check to see if an existing definition is present. If so they store the previous definition and install the new definition. On unload the parcel merely replaces the old version. Method Overriding is of vital importance to the creation of components that can be freely loaded and unloaded.

2.4 Consequences

As a result of the above facilities Parcels provide a very convenient component technology that has completely supplanted the use of source files and BOSS files (an older, less powerful pickling system) for the delivery of add-on products, and has largely supplanted the use of source files for the maintenance of "change sets" within ObjectShare. Partial loading and method overriding have enabled us to refactor the system of base image and add-on products without concern for fit, and to be able to resolve conflicts and shift code between components at leisure, rather than as each component is refined. To the best of the author's knowledge Parcels are the first technology to include these facilities.

Users report that parcels may be used as a small team's ENVY/Developer (the premier team programming and configuration management tool for Smalltalk) with great success. Their convenience, speed and support for source makes them better-suited to delivering deployment components and expressing development artifacts than any previous technology. They are able to directly express the most common forms of Smalltalk code redefinition, class definition, method (re)definition, and have hooks for the others, such as class variable definition, pool definition, etc. Within ObjectShare source files are now only used for delivering patches to the base system and parcels.

In fact, Parcels have been so successful in allowing us to componentise what was previously a rather monolithic environment, that they have made pressing the higher-level problem of accessing optionally-loaded tools from the user interface. Which brings us neatly to the next example of meta-programming.

3. A Calculus for Component Composition

The developer accesses the entire VisualWorks environment through the VisualLauncher, including loading and unloading parcels, launching browsers, etc. As such it is analogous to the root menu on many window systems such as Window's start menu. Although there are a number of other examples, the launcher is the best example of a tool that needs to be extended as components are loaded, and contracted on unload. Prior to parcels we took the approach where the launcher was fixed and loading components enabled and disabled specific buttons and menu items. This approach was already too inflexible and necessitated some add-ons installing a subclass of the launcher that was extended with menus and buttons appropriate to the add-on. But this approach does not help resolve the conflicts that occur if two different add-ons need to define their own launcher. Two launchers is one too many, and automatic merging of subclasses is intimidatingly hare-brained.

Another conventional approach would have dictated implementing a registration protocol and requiring components to register and unregister with the launcher, passing appropriate information to add and remove their various menu buttons and menu entries as components are loaded and unloaded. Since, in the VisualWorks GUI, the effect of pushing a button or selecting from a menu is simply to send some message invoking some method it seems irksome to have to include additional code to register these messages. Instead we invented a scheme for embedding button and menu information directly into methods, and have the system compose interfaces by interrogating those methods, allowing dynamic reconfiguration of the launcher and other tools as methods are loaded, defined or removed.

The VisualLauncher has a menu bar along its top and immediately below the tool bar, a row of iconic buttons, providing quick access to a subset of the tools available from the menu bar. One such tool is the UIFinderVW2, a tool for browsing GUI definitions that is included in the UIPainter parcel, a component that includes all the base tools for defining GUIs. The method that launches the UIFinderVW2 reads:

 VisualLauncher methods for actions

 browseApplications
 "Open a new UIFinder."

 <menuItem: '&Resources' icon: #finderIcon nameKey: nil menu: #(#menuBar browse) position: 10.1>

 <menuItem: 'Browse Applications' icon: #finderIcon nameKey: nil menu: #(#launcherToolBar) position: 20.02>

 UIFinderVW2 open

The body of the method is the one line “UIFinderVW2 open” which opens the finder. The items between <>'s are method annotations and define a menu item on the Browse sub-menu of the menu bar, and a button in the row of buttons below the menu bar. Method annotations can be used to add arbitrary messages to methods and are used to mark special kinds of methods with additional information. A method with annotations is represented by an instance of AnnotatedMethod which contains an Array of annotations, each of which being represented by an instance of Message, an object with a message selector and an array of arguments. Hence the above method's annotations comprise two instances of Message each with the selector #menuItem:nameKey:menu:position: and arguments derived from the literals. Note that the syntax of annotations is simply the syntax of message expressions with literal arguments, so annotations do not require their own syntax or any compiler extension.

Menus implement a method augmentFrom: startClass to: stopClass menuName: name that causes them to search for annotated methods in the class hierarchy from startClass up to and including stopClass. For example, the following is used to add a button which invokes VisualLauncher>>#browseApplications and which has VisualLauncher finderIcon as its icon.

 VisualLauncher methods for menus
 updateToolBar
 | menu |
 menu := self class launcherToolBar.
 menu
 augmentFrom: self class
 to: VisualLauncher
 menuName: #launcherToolBar.
 toolBar value: menu

The menu instantiates a MenuAutomaticGenerator which implements the protocol of menu-augmenting annotations, including #menuItem:nameKey:menu:position: and a few others. The menu gets the generator to perform the annotation's message, using a message-not-understood exception handler to ignore inappropriate annotations. It then queries the generator to see if the annotation's menu name matches the menu being defined and to extract the information in the annotation that defines the menu entry. The menu then extends itself with an appropriately decorated item that yields the method's selector when invoked. Pressing or selecting the defined entry causes the launcher to perform the selector and invoke the method that defined the item.

For the curious the floating-point number provides an extensible hack for specifying the item's position relative to other items. The base menu is defined using programming tools in the form of a literal array from which a menu is built. When the menu augments itself it numbers its items. Items are grouped together between dividers (a line across a menu or space between tool bar buttons). These groups are numbered starting from 10 in increments of 10, leaving room for 9 groups to be defined between each group in the base menu. Items within the group are numbered from 0.01 in increments of 0.01. Hence the floating-point argument to the position: keyword is able to place the menu item at a constant position relative to items in the base menu without reference to other extensions.

To drive the process we have altered the methods that add and remove methods from classes to check for annotated methods, which are relatively rare, and send a message to the class whenever an annotated method is added or removed. The class then implements either #instanceMethodsChanged or #classMethodsChanged as appropriate. In the launcher's case it rebuilds both the menu bar and the tool bar. This scheme is used throughout the programming tools, including the browser, to implement extensible tools. A delightful consequence of this is that one can define a menu extension method in the browser on a browser menu, see it appear on the relevant menu immediately on accepting the method, and see it disappear on removing the method.

Since annotations are simply Messages, the browser also includes the selectors in the senders/implementors cross-reference menu, allowing one to quickly track-down other examples of menu definitions and their implementations. Customers have already extended the system, and we will fold-in this extension in the next release. The fundamental extension is to get the Smalltalk compiler to derive the set of permissible annotation messages from the class in which the method is being compiled. ApplicationModel is the root class for all GUI applications, and hence ApplicationModel class>>#pragmas returns an array of the Menu extension pragmas. COMInterface is the root of all classes that export their instances as COM objects, and COMInterface class>>#pragmas returns an array of messages that are used to define the C signature of Smalltalk methods that should comprise the interface of a Smalltalk object exported through COM.

It should be pointed-out that adding annotations to methods is possible because methods are simply Smalltalk objects like any other in the system, and that subclasses of CompiledMethod may be defined and used as required. So annotations themselves are good examples of the utility of meta-programming.

4. Limitations and Future Work

The Parcel system is still a work in progress. It is being enhanced with formal support for code editing previously addressed with ad-hoc hooks, such as declaration of the various global variables, and changing a class's format. It is being extended to handle our prototype NameSpace implementation.

The existing system has two bad bugs that have been tolerable but also need fixing. The first of these is that there is no ordering information maintained for method overrides. Hence if two parcels A and B both override the same method M, B is loaded after A, and A unloaded, the unload of A will reinstall the original definition of M. In practice none of our 60-odd parcels override the same methods, but the potential for disaster is there.

The second bug is that there is no support for installed classes reverting to an uninstalled state. If two parcels, A and B contain classes such that classes in A inherit from classes in B, and A and B are loaded, and B is unloaded, the classes in A that subclass the classes unloaded by B will be deleted. Clearly the Parcel system should exhibit an idempotence property whereby all possible interleavings of load and unload operations resulting in the same set of loaded parcels should leave the system in the same state (apart of course from the ordering of method overrides, which is dependent on specific interleavings).

In the above example that overrode become: and release: what is actually happening is that two orthogonal dependency mechanisms are being merged within the become: method. The code makes this clear:

Implementation of Object>>#become: with no dependency mechanism:

become: otherObject

 "Swap the state of the receiver with that of anObject."

 <primitive: 72>

 ^self handleFailedBecome: otherObject

Implementation of Object>>#become: with "standard" dependency mechanism,

where the above implementation is renamed to primBecome:

become: otherObject

 "Swap the state of the receiver with that of anObject. Be careful to preserve dependents."

 | mine its |

 mine := self myDependents.

 its := otherObject myDependents.

 self primBecome: otherObject.

 mine == its ifFalse: "Don't bother if neither object has dependents."

 [self myDependents: mine.

 otherObject myDependents: its].

 ^self

Implementation of Object>>#become: with addition of an event-based dependency mechanism:

become: otherObject

 "Swap the state of the receiver with that of anObject. Be careful to preserve dependents."

 | mine its myEvent itsEvent |

 mine := self myDependents.

 its := otherObject myDependents.

 myEvent := self myEventTable.

 itsEvent := otherObject myEventTable.

 self primBecome: otherObject.

 mine == its ifFalse: "Don't bother if neither object has dependents."

 [self myDependents: mine.

 otherObject myDependents: its].

 myEvent == itsEvent ifFalse:

 [self myEventTable: myEvent.

 otherObject myEventTable: itsEvent].

 ^self

Since the existing dependency mechanism is retained, it is possible for the override to implement both. But if one wanted these two systems to be orthogonal and independently loadable the simple method override scheme would prove inadequate.

One promising idea is a calculus of override composition, reminiscent of method combination in CLOS [Bobrow88]. Here one could specify how to edit a method into some base method such that a functional aggregate could be formed. The annotation approach for menus above seems adequate and adaptable to this case. CLOS's method combination semantics are a suitable starting-point. The application of such a scheme in the above example might look like:

Skeleton implementation of Object>>#become: in event-based dependency component:

become: otherObject

 <methodExtension>

"annotation informing loader that a merge is required"

 | myEvents itsEvents |

 myEvent := self myEventTable.

 itsEvent := otherObject myEventTable.

 <innerMethod>.

"annotation that invokes existing method"

 myEvent == itsEvent ifFalse:

 [self myEventTable: myEvent.

 otherObject myEventTable: itsEvent].

 ^self

One possible implementation might be derived from the method wrapper ideas in [Brant98]. A mechanism which is based on editing parse trees would give better run-time performance at the expense of longer install times.
5. Summary and Conclusions

We have presented a component technology and a cute but extensible hack for defining extensible user interfaces. These two elements underpin the architecture of the latest release of the VisualWorks programming environment, and contribute most significantly to this new release's enhanced functionality, maintainability and extensibility. Both schemes rely on meta-programming and as a result achieve a concision and power that could not have been reached by conventional techniques.

Extensible self-describing systems allow a collapsing of levels such that the elements of a system which provide functionality can be used to organize that functionality. This results in a more concise and more manipulable system than one where functionality and the calculus to organize it have, by necessity, been separated.

To the author this is strongly reminiscent of Russel's attempt at formalizing mathematics [Whitehead25] and Godel's [Godel31] subsequent incompleteness theorem. Russel's approach of piling meta-level upon meta-level where each level can manipulate only lower levels leads to mushrooming layered systems that are far from concise and always limited. In an increasingly distributed and componentized computing environment analogous approaches seem doomed to over-complexity.

Godel demonstrated the inevitability of inconsistency in complete systems. Our experience shows that working in a self-describing system, one that can certainly form paradoxes {footnote: Smalltalk systems can redefine themselves into incorrectness and failure, the equivalent of paradoxes, e.g. by defining CompiledMethod to have no bytecodes}, one can collapse the meta-levels levels down and survive quite happily. In practice one does not state the obvious paradoxes and instead reaps the benefits of a single level of description.

6. References

[Bobrow88] G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon. Common Lisp Object System Specification X3J13 document 88-002R. Sigplan Notices, 23, 1988.

[Brant98] John Brant, Ralph E. Johnson, Donald Roberts, Brian Foote, Wrappers to the Rescue, in Proceedings of the European Conferrence on Object-Oriented Programming, (ECOOP ’98), Brussels, Belgium, July 20 - 24, 1998, Springer-Verlag.

[Brockschmidt95] Kraig Brockschmidt. Inside OLE, second edition, Microsoft Press, Redmond, Washington, 1995.

Foote, B., & Johnson, R.E. (1989). Reflective facilities in Smalltalk-80. In In Proceedings of the 1989 ACMConference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '89), (pp. 327-335). New York: ACM.

[Godel31] Godel, K, On Formally Undecidable Propositions, New York: Basic Books, 1962.

[Goldberg83] Goldberg, A., and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-Wesley, 1983

[Nelson91] Greg Nelson, Ed. Systems Programming With Modula-3, Prentice Hall Series in Innovative Technology, 1991.

[OMG91] Object Management Group, Common Object Request Broker Architecture and Specification, Document 91.12.1, Object Management Group, 1991.

[ParcPlace89] ParcPlace Systems, Objectworks Reference Guide, Smalltalk-80, Version 2.5, Chapter 36, ParcPlace Systems, Sunnyvale, CA, 1989.

[Sun96] Tim Lindholm, Frank Yellin The Java Virtual Machine Specification, http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html

[Sun97] Java Object Serialization Specification. http://www.javasoft.com/products/jdk/rmi/doc/serial-spec/serialTOC.doc.html

[Ungar 95] David Ungar. Annotating Objects for Transport to Other Worlds. In Proceedings of the 1995 ACMConference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '95), pp. 73-87, Austin, TX, October 1995.

[Vegdahl86] Vegdahl, S., "Moving Structures between Smalltalk Images", In Proceedings of the 1986 ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '86), November 1986.

[Whitehead25] Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge: Cambridge University Press. Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge: Cambridge University Press, 1962

7. Acknowledgments

Thanks are due to the author's own broad-shouldered giant, David Leibs, the author of the original Parcel system which the author extended with partial loading, method override and shape change. David's code is a joy to work with, having been designed with comprehensibility and extensibility in mind, by a true Smalltalk master. David also contributed the method combination idea in Section 4.

Experiences with Meta-Data Programming

Bobby Woolf
SilverMark, Inc.

I have designed and developed four systems where I used meta-data programming:

1. A file reader framework

2. An HTML parser framework

3. A GUI event recording framework

4. A database data-mining query interface

The File Reader

The File Reader provides a simple interface for programmers to describe the mappings between record-oriented file schema and the corresponding parts of their object model. For example, the File Reader can convert the following record data:

John Smith | 123 Main St. | Lalaland | CA | 12345 | 408-555-1212

into the following object structure:

using the following description of the mappings (shown here in Java code):

FormatTreeBuilder builder = new FormatTreeBuilder();
builder.setFieldDelimiter('|');
builder.startResultField(new Person());

builder.addStringField(this.setNameSpec());

builder.startResultField(new Address());

builder.addStringField(this.setStreetSpec());

builder.addStringField(this.setCitySpec());

builder.addStringField(this.setStateSpec());

builder.addStringField(this.setZipSpec());

builder.endCompositeField();

builder.addField(this.setAddressSpec());

builder.addStringField(this.setPhoneSpec());
builder.endCompositeField();
builder.recordField();
return builder.streamFormat();

The resulting stream format can be plugged into a special read stream and used to read any data of this format. The framework does all of the reading and converting work. (For more details about the File Reader’s design, see http://home.att.net/~bwoolf/Frameworks_Patterns/Frameworks_and_Patterns.htm.)

The way the File Reader does this is to allow the user to describe the format of the data (through code, as shown above) and store those descriptions. The key is that the framework does not store the data, but rather stores the description of the data, a.k.a. its schema or meta-data.

The main way the File Reader stores the descriptions of the data is through a hierarchy of classes called FieldFormatDescription. A FieldFormatDescription contains all of the behavior necessary to read a field from the record data; the class itself is abstract. The simplest of the concrete classes are DelimitedFieldDescription and FixedLengthFieldDescription; the latter reads up to a specified delimiter (such as '|' in the example above) and the latter reads a set number of bytes or characters.

Other classes in the FieldFormatDescription hierarchy perform other useful functions that enhance the paradigm of “read the field.”

· CompositeFieldDescription reads several fields and stores them as one (see the Composite pattern). This is how the File Reader reads several fields for an Address but stores them as a single object.

· RecordFieldDescription, which reads an entire record (by using a record delimiter) and then parses its fields (see the Decorator pattern). In this way, even if a record is corrupted by containing too many or too few fields, the File Reader will properly resynchronize at the beginning of the next record.

· DomainFieldAdapter stores a field’s data as an aspect of a domain object (see the Adapter pattern). In the above example, this maps each field’s data to its proper slot in the domain object.

The key here is that each object knows how to read its part of the record and what to do with the data. Each object doesn’t do very much; several are strung together to perform complex tasks. Each one contains a description of what to do when data is provided.

HTML Parser

In many ways, the HTML Parser works very much like the File Reader. However, the user does not have to specify the format of the data; the framework knows the data will follow the standard HTML format.

The heart of the framework is an HtmlNode class hierarchy. Each instance represents an item in an HTML parse tree. Because there are numerous different types of HTML parse nodes, there are an equal number of classes in the hierarchy. Simple Component subclasses like LineBreak and Paragraph represent simple standalone tags (e.g., “
” and “<p>”). Container subclasses like Body represent tags that bracket their data with begin and end tags (e.g., “<body> ..."body data"... </body>”). (This distinction between containers and components is an example of the Composite pattern.)

Each class has named instance variables that represent the known possible attributes for that tag. For example, Table, the Container subclass that represents a pair of table tags (“<table> ... </table>”), contains attributes like align (String), border (int), and width (Dimension), each declared as the proper type (as shown in parenthesis). This ability to uniquely assign attributes to each different type of node comes from the hierarchy approach; it would not be possible the hierarchy were just a single concrete class, HtmlNode.

Each object is a description of its node in the HTML source and its corresponding node in the parse tree. As subsequent HTML standards introduce new HTML tags, the HtmlNode hierarchy can be expanded to handle them.

GUI Event Recording

GUI event recording is useful for testing. By recording the user’s interactions with a software application, a testing framework can then repeat the interactions to test the application in an automated fashion.

The simplest approach is to record the windowing system events themselves. However, this leads to recorded events like “right mouse button clicked at screen position 200 @ 100.” The problem with such a recording is that it’s overly specific. It simply assumes that there is some widget at 200 @ 100 to click on. If the screen size or resolution changes, the window moves, the platform look-and-feel changes, or the developer repaints the window and rearranges the widgets, the event will probably fail to play back properly. This makes tests very fragile.

A more flexible approach is to record a meta description of the event. For example, the user didn’t really click on 200 @ 100; rather, he clicked on the widget at that position, so remember that widget. For that matter, he didn’t really click on the widget; rather, he invoked one of the widget’s actions (behaviors), in this case, one that you happen to invoke at present by clicking on it. So you don’t really want to know “right mouse button clicked at screen position 200 @ 100,” but rather that “toggled the <OK> button.”

This suggests how to record a description of an event, rather than recording the event itself. To record the description of a GUI event, you need to know two things:

1. The widget the event occurred on

2. The widget’s action the event invoked

This means a couple of things. First, if the event didn’t occur on a widget, the event is unimportant and can be ignored. Second, although there are lots of ways to identify a widget, they all boil down to “identify the widget somehow.” Third, although there are lots of ways to invoke a widget’s action, they all boil down to “given this widget, cause it to perform this action.”

This description of the event, rather than the event itself, is more difficult to record but more reliable to replay. As long as the widget exists and can be found, issues such as what it looks like on the screen or its position on the screen become irrelevant. As long as the widget can perform the specified action, issues of how the user invoked the action (mouse click, keyboard click, menu selection, etc.) become irrelevant.

Data-Mining Interface

This example is more difficult to describe. It purpose is rather domain specific and its solution is rather complex. However, this is also my best example of describing business rules with meta-data and developing an active object model.

The users of this system were marketing professionals who wanted to mine customer data for significant tends that would show them how to market their products more effectively. The problem is that there’s a virtually unlimited variety of ways to examine the data, and the vast amounts of data required that the data examination process be automated as much as possible. Yet the process for examining the data couldn’t be hardcoded because of the endless variety of processes the users might want to employ. Furthermore, the users weren’t programmers and couldn’t be expected to modify the system themselves, and no professional programming staff would be available to modify the system once it was deployed.

The mental leap we made in solving this problem was recognizing that the data examining process(es) couldn’t be represented by code, as it almost always is, but rather would have to be represented by objects that the users could manipulate in the deployed system. These objects would have to describe the process, and in doing so would need some way to be executed as if they were code.

I developing the solution, I basically reinvented the Interpreter pattern. A process is represented as a decision tree that is used to query data from the database and sort through it and filter it to see what pattern that produced. Each node in the tree is an ExpressionNode, which consisted of an OperationNode and one or more ArgumentNodes. Operation nodes included simple math (+, -, *, and /) and boolean logic (and, or, equals, etc.). Argument nodes included constants, variables, and the results of other expression nodes. This last capability meant that expression trees could be nested for arbitrary complexity.

This set of objects enabled us to give a lot of help to the user so that composing these trees feels a lot less like programming. Each argument node knows its type (boolean, number, etc.). Each operation node knows what argument types it expects and what result type it produces. This can be used to limit the node choices made available to the user, and to validate the tree at “compile time” rather than have it fail at “run time,” after it might have spent several hours sorting through tons of data. To the user, the ability of the system to make helpful suggestions and catch errors seems very AI like.

As challenging as developing the process domain was, developing the editor views that allowed the users to construct these trees without feeling like they were programming was equally challenging. In hindsight, we may have concentrated too much time on the views initially, but we wanted to make sure that we not only had an adequate domain, but a palatable way for the users to edit it as well. Each expression node know how to represent itself as a set of standard GUI widgets, whose configuration was driven by the operation node. For example, most operations were binary, so the expression node editor would contain three combo-boxes (one each to select the receiver argument, the operation, and the parameter argument). Buttons were included for actions like creating and deleting nodes, etc. If the user chose an operation that was unary or polynary, argument widgets disappeared or appeared as necessary. There was another view for editing arrays of arguments. All of these views were nested and sub-nested dynamically in an editor window depending on what node the user selected for editing. It was all rather complex and time consuming to get working, especially as the domain layer’s design kept changing out from under the view layer’s design.

Conclusions

Developing an active object model through meta-data programming requires a leap from specifying system behavior to specifying a way to describe the specification for system behavior. Think of recording a GUI event: rather than recording what an event was, you should record a description of what the event meant. The File Reader does not record “read the first field and store it in attribute X”. Rather, it uses at least two objects, one that reads the data from the next field (whether or not it’s the first field) and one that takes the data (however it was read) and stores it in attribute X. Figuring out how to describe the invariant properties of data, without limiting the variability of the data itself, is the challenge of meta-data programming.

The other main challenge of developing an active object model is providing the user an intuitive view of the object model that enables the user to see his business rules and to edit them as desired. Because the total functionality of the business rules is constrained by the domain’s ability to express those rules, the view has a known and limited range of functionality that it must support. Nevertheless, even this known range of functionality is complex, difficult to represent to the user intuitively, and poorly supported by standard GUI window painters that are design to support a static arrangement of standard GUI widgets. Thus developing the rules domain is only half the battle; giving the user a UI to those rules is a significant task of its own.

Position Statement: Active Object-Model

by Weerasak Witthawaskul

Department of Computer Science

University of Illinois at Urbana-Champaign

E-mail: witthawa@uiuc.edu

Introduction

In keeping pace with the rapidly change in business requirements, there is a need that application development paradigm has to be changed. Traditionally every business has its own information technology (IT) department to take care of company IT infrastructure and application development. However, due to high demand of business changes and new business opportunities, in addition to lacking of enough IT professional, almost IT department maintains a long application development backlog and there is less, if not at all, hope when their users will be able to get their business applications fulfilled.

While, many IT department has employed a rapid application development (RAD) tools in order to speed up their application development process, it does not help programmers much in building and maintaining a business logic, the core module that is crucial for business needs. As programmers usually come from the computer field, they don't have much knowledge about the specific business process requirement like real users who know their business the best. On the other hand, users don't know how to program and sometimes cannot precisely provide what they want in terms of application requirement. Along with the different technical terms they communicate, it is really difficult to come up with the exact application design and requirement.

Furthermore, most of the applications are developed according to the specified requirements, it is rather static and not easy to adapt when there are changes required. When there is a need to change, some are needed to be redesigned or even though it can be customized, the logic embedded in the program will have to be added and changed frequently so that it's rather difficult to understand, test, debug and keep the documentation up to date.

Discussion

One of the solutions is to employ the concept of division of labor in which people do what they do best. The application development process will be involved from both programmers and users. There is a separation between application logic and business logic such that programmers will build and maintain the former while users will create business logic and maintain their business data. If there is a change in business requirement, the users will be able to effectively make changes in their part without having followed the long application change management process. This solution will help increase productivity, accuracy, flexibility and business competitiveness.

There are many kinds of application and business logic separation. They are different in terms of flexibility and complexity. The system that has high flexibility comes with the cost of the system complexity. For example, a parameter-driven system provides a limited customizability that the customizable data or parameters must be known in advance. Other examples are provided in [1].

The separation of business logic from the application logic also introduces the concept of behavior such that the application is now data that is state dependent and behaves according to its own state. Each data along with its business logic, or "object", has its own well-defined behavior. The business model is therefore dynamic or "active". The business logic can be used as a data validation and/or trigger. For example, the data entry system might define an object model such that when there is a new data entry, it checks the data format of each field on the screen, validates the uniqueness of the record key and then post the transaction into the database. All the logic will be implemented into the business logic such that the system will be able to support any kind of data entry screen.

There are at least two approaches in developing business logic structure. One is an interpreter approach and the other is a code-generation approach. The former requires a specific business rule format that is easy to code by novice users yet flexible enough to accommodate virtually any business logic. This business rule will then be interpreted by an interpreter engine or a virtual machine that reads the business rule and process the data on the fly. The business rule creation step can be created manually from text files or automated from the visual development environment. This approach provides a flexible configuration, platform and programming language independent. The latter system converts the business rule into the source code that is ready to be compiled and integrated into the system. The big advantage is the performance and native code functionality. For example, the system can use the object oriented feature if it is compiled into an object-oriented programming language. However, it will strict into a language dependent and it'd rather difficult to port to another programming environment. The decision between choosing which approach depends on the performance and flexibility tradeoffs.

However, in order to support the high flexibility of business logic structure, it is very hard to develop an application that enables this functionality, that is, a system that does not know the data type or functionality in advance. The application logic must be very flexible. It must be able to keep data structure of the unknown data, or "metadata" and to do the execution according to the business logic. The implementation of the application logic is hard and domain specific. However, once it is developed, it can be used without or with minimal customization.

Furthermore, since the program behavior is depended on both the application logic and the current state of the data and business logic, it is virtually impossible for programmers or users alone to understand the current system. Hence, it complicates the maintenance process. If there are bugs, it is difficult to track whether it is from the application logic or business logic part. A good test and change management is required in order to minimize possible errors.

However, another good advantage of the active object model is the documentation automation. Since the business logic is created separately from the application logic and stored as part of the database. It is relatively easy to generate and maintain the documentation. Therefore the cost of application maintenance is lower.

Application

The active object model has been used in designing and implementing a dynamic database edit process in one of the manufacturing company. The database consists of a hundred relational tables shared by many departments across the enterprise. Since there are complex relationship among them, the system must maintain the consistency and accuracy of all table relationship, that is, when there is a transaction update to one tuple in the table, the system must know which other tables will be impacted and update them accordingly. In the past, the process must be explicitly coded in each programs where it is difficult to keep track of changes occurred. For example, when there is a business requirement change, the changed business logic must be updated in every program that is using it. However, if we separate the business rules from the application and treated them as part of the data ("object") and any program that accesses that data is able to invoke the rule according to the predefined standard interface of the event, it will help solve the problem. If, for instance, the business rule bound with the data is changed, every program that access the data will be automatically able to invoke the new rule without any change inside the program.

Currently, the business rules defined in the system are format validation, data-dependent validation, decorator, logic computation and database operations. Each object may be a field on the screen, a virtual variable, a tuple in a relational table and so on.

The system employs the interpreter approach where the format of a business rule is well defined. For example, a field-on-the-screen object has a business rule that maps itself to be part of a table tuple in the database and has its own format validation, that is, a date or an amount where it is invoked when a user enters data into it. This step can be done locally (or independent with other object). After the object has been entered, it will be checked against the data-dependent validation step which checks for any interdependency with other objects whether they are other fields on the same screen or they are data in other table. For instance, a product code field in a product sales data entry must be valid in the product detail table, otherwise an error message will be shown. The business logic is stored in a metadata table which are a set of relational tables. The communication between an object that requests a validation and a server that processes the request needs not be in the same machine. It can be implemented in a distributed environment such that there is one server that maintains all objects and their model and there are many clients that initiate and request the service. It fits well in the distributed, browser based, client-server environment.

Conclusion

The separation of application logic and business logic will improve the system flexibility and adaptation. It can be done by keeping data definition and business rule as a data of data or 'metadata'. This metadata will ensure the consistency and accuracy of the data in the system without having known the type, format or data-interrelation in advance. Users are empowered to create and maintain what they know best, their business logic, in an easy-to-understand format. Having spent less time in source code changes and redesign, developers may spend more time extending a system functionality without impacting existing ones.

Reference

[1] Brian Foote, Joseph Yoder, "Metadata and Active Object-Models", PLOP'98 conference, Monticello, Illinois 1998.

Configuring dynamic objects in Smalltalk

Joseph Pelrine

Daedalos Consulting

Position paper for

Metadata and Dynamic Object-Model

Pattern Mining Workshop
OOPSLA '89, Vancouver, BC

Joseph Yoder et al., organizers

Smalltalk is an ideal language for modeling dynamic systems. Lack of strong typing, combined with reflective facilities, no compile/link/debug cycle, and a fully integrated development environment combine to increase speed and effectiveness. Sometimes, though, even that is not fast enough.

When business logic changes on the fly, there is little time left for developers to catch up. Ways are sought for either creating new objects, or for configuring existing objects, to reflect these changing roles. Patterns for implementing this in Smalltalk are (for the most part) already documented, while others need to be.

The author takes the position of being a cautious practitioner (as well as a Smalltalk bigot), and has a number of concerns, which he worries about.

Back when we all started learning about objects, one of the first things they told us was that an object consisted of state and behavior. When an object changes rapidly, though, when does it stop being that object, and actually becomes another object? How much change, and what change can an object suffer without losing its identity?

If we look at the two aspects of changing state (or structure) and of changing behavior, we will see that they are similar to problems already occurring in Smalltalk. A quick look at the solutions to these problems may give us some new ideas about how to solve other problems.

1. Unknown object

A change in the state or structure of an object is a very difficult transformation to map. Rid of a known structure, an object becomes no more than an amorphous lump of bytes. In any case, it is extremely difficult to create an object whose behavior will be more than the sum of its accessor methods and some generic behavior defined in Object.

A similar problem exists in Smalltalk in inter-image communication, where an object is read in from a binary stream, and where no class definition for the objects' class exists in the image. Runtime packaging tools will exclude all classes are not explicitly referenced, and the packagers have no way of figuring out which classes may come in via streams.

An elegant solution for this is the AutoRecord [Steinman 1997]. Instances of AutoRecord have all the behavior of IdentityDictionaries in addition to a very special meta-behavior. They add state accessing behavior on the fly.

AutoRecord instances pretend that they have state corresponding to any unary message received for which they contain a key. In such a case, they return the previously stored value at that key, or a default value (normally nil) if they do not contain that key. Conversely, instances respond to any keyword message received. In such a case, they store the argument at the key corresponding to the keyword preceding the argument.

AutoRecords are quite useful as an implementation of the NullObject pattern [Woolf 1998], or as a "bit-bucket".

2. Known object

Changing the behavior of a known object is easier, and solutions exist which range in complexity from simple to "off-the-wall". Most existing solutions are documented in pattern form in [Beck 1996] and [Gamma 1995], with implementation examples in [Pelrine 1996] and [Pelrine 1998].

One of the standard ways to change an object's behavior at run-time is by using what Smalltalkers call "Pluggable Behavior". The following four pluggable behavior techniques are relatively widely known, and will not be described in more detail here:

· State flags

· State object / strategy object

· Pluggable selector

· Pluggable block

A common characteristic of all the above techniques is the use of instance variables to hold behavior objects, thus turning behavior into state.

An extreme form of pluggable behavior is the use of a pluggable, or instance-based method dictionary [Pelrine 1998]. Although allowing the most flexibility, this technique is considered "clever", and not thought to be best practice for production systems. Also, in some cases, use of this technique will require including the Smalltalk compiler in the runtime image, thus increasing image size as well as bringing up a number of licensing issues.

Another technique which I have used successfully a number of times is active event table manipulation [Pelrine 1997]. This technique is based on the event-handling framework originally implemented in Digitalk Smalltalk [Messick 1993], and which served as the basis for PARTS Workbench and VisualAge Smalltalk event-driven, visual programming paradigm. The event-driven communication model is an example of the Self-Addressed Stamped Envelope pattern [Brown 1995], related to the Observer pattern [Gamma 1995].

With this technique, the events that an object responds to, and the messages it performs in response, are contained in event tables, which are also instance variables. Since the event tables themselves are also objects, they can be manipulated to provide any desired behavior, and the Digitalk framework provides a public interface for doing just that.

3. Caveats

Being a practitioner, I also tend to look at the dangers and problems of using such techniques. I'd like to quickly present a number of concerns, which may or may not be relevant, depending on the application context.

Debugging

Smalltalk makes all this stuff (meta-level programming) easy. Too easy, in fact. When you meta program, you are no longer really programming in Smalltalk. The toolset doesn’t support you that well. You can no longer read a line of code and guess what it does correctly.

Meta-level programming is important for mastery of Smalltalk, but it is not important for effective engineering. In fact, it's far more important to know when NOT to use it than it is to know how TO use it. - Kent Beck

Security

In the past, I've worked for a number of clients who were so worried about security considerations that they e.g., would not allow any program-generated dynamic SQL to be used. Depending on project priorities (and on management), it may be difficult to get management to buy into using such techniques.

Data-only objects

One problem with constructing new classes and objects on the fly is that such objects' behavior is reduced to the sum of its accessor methods and some generic behavior defined in Object. These data-only objects are antithetical to good object design.

Performance

All the aforementioned techniques use some means of indirection, which always comes at the cost of performance. Depending on the application domain, this could be more or less of a problem.

I believe that the use of well-established implementation techniques can allow the development of a flexible, configurable object-model and system, but am hesitant to build too much upon the shifting sands which may result from careless use of such techniques.

References

[Beck 1996]

Kent Beck

Smalltalk Best Practice Patterns

Prentice Hall, 1996

[Brown 1995]

Kyle Brown

Understanding inter-layer communication with the SASE pattern

Smalltalk Report, November-December 1995

[Gamma 1996]

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Design Patterns

Addison-Wesley, 1995

[Pelrine 1996]

Joseph Pelrine

Techniques of meta-level programming

European Smalltalk Summer School, Lausanne, Switzerland, August 1996

[Pelrine 1997]

Joseph Pelrine

Modular Smalltalk

European Smalltalk Summer School, Nice, France, August 1997

[Pelrine 1998]

Joseph Pelrine

Guru 101 - Grokking the Smalltalk system

Object Expo, London, July 1998

[Woolf 1998]

Bobby Woolf

The NullObject Pattern

Pattern Languages of Program Design 3.

Robert Martin, Dirk Riehle, and Frank Buschmann (editors)

Addison-Wesley, Reading, MA, 1998

Software

[Messick 1993]

Steve Messick et al.

Smalltalk/V Event System

Digitalk, 1993

[Steinman 1997]

Jan Steinman et al.

Bytesmiths Toolkit

About the author

Joseph Pelrine is a senior member of the Daedalos Consulting Group. He is currently working in Munich, where Kent Beck has asked him to assist in his latest eXtreme Programming project. A former columnist for the recently deceased Smalltalk Report, he is currently co-authoring a book on ENVY/Developer with Alan Knight and Jan Steinman, which is to be published by Cambridge University Press in 1999. He can be reached at jpelrine@csi.com.

 autotext Zdefault_logo [image: image1.wmf]

OOPSLA '98 Workshops

Meta-data and Prototypes in an Electronic Market Trading System

oneglossary ZAuth * mergeformat

glossary "
Zauth_one
 * mergeformat * charformat
Author(s):

Torsten Layda (torsten.layda@swx.ch)
one

glossary macrobutton SetVersion "
Zver7_one
 * mergeformat * charformat
Date:

25 September 1998

one

glossary macrobutton SetClassification "
Zclass_one
 * mergeformat * charformat
Classification:

oneglossary Zclass0 * mergeformat

glossary "
Zclass0_one
 * mergeformat * charformat
For Internal Use Only

one

glossary macrobutton SetReference "
Zref_one
 * mergeformat * charformat
Reference:

B-LSG-OOP-8925/E

oneglossary Zkeyw * mergeformat

glossary "
Zkeyw_one
 * mergeformat * charformat
Keywords:

one

glossary macrobutton SetFilename "
Zfilename_one
 * mergeformat * charformat
Filename:

g:\gbi\msc\lsg\oopsla 98\workshop\oop8925e.doc/TLA

oneglossary Zappr * mergeformat

glossary "
Zappr_one
 * mergeformat * charformat
Approval:

oneglossary Zdist * mergeformat

glossary "
Zdist_one
 * mergeformat * charformat
Distribution:

Introduction

Financial markets are an example of an environment where sharing and maintaining large sets of complex information give the holder a competitive advantage.

More and more financial markets are moving away from the traditional open out-cry mode towards an electronic system with participants sitting behind their computer screens. Only electronic systems are considered capable of meeting today's challenges of globalisation and rapidly increasing turn-over. The daily volume traded on the Swiss Exchange, e.g., after two years of operation, would by far not be achievable by traditional open out-cry.

An electronic stock exchange generally consists of two major components:

1. A central system implementing the actual market place (exchange). This system receives all orders from the market participants and generates trades from these. In addition, it is responsible for disseminating all relevant information to the market participants.

2. A trading system, which is deployed at each market participant's site. This system is the end-user's entry point to the market place, and provides him with all information relevant for a given market. Today, trading systems supporting more than one stock exchange become more and more common. This approach reduces deployment costs, increases the participants flexibility. It also leads to a tighter coupling of the prices paid at different markets. The standard example are trading systems on which derivatives (options and futures), and their underlyings can be traded simultaneously.

The major challenge for any system supporting electronic trading is the treatment of large amounts of complex financial data. The challenge is two-fold:

1. The amount of data to be received, processed and presented to the user is ever increasing. This is particularly caused by the growing traded volumes world-wide.

2. The logical structure of the data is getting more and more complex. This is, among others, due to the growing number of financial instruments, and to the unification of stock exchanges.

It is this complexity of the data to be validated, processed and presented to the user which gives rise to several design challenges. In the following, we shall focus on two particular problem domains, which are of general interest, and to which techniques to be discussed in this work-shop can be applied

1. Data Model for the Financial Data Relevant for Trading

2. Configurability of the Graphical User Interface

It is noteworthy that, although discussed here in the context of an electronic stock exchange, they apply to any financial application.

Data Model for the Financial Data Relevant for Trading

Problem domain description

To model all elements occurring in the data of an electronic exchange, a large number of attributes is necessary. Examples are

· OrderPrice

· OrderSize

· OrderDate

· OrderExpiryDate

· TradePrice

· TradeDate

There is a business motivated distinction between, e.g., TradeDate and OrderExpiryDate, in that a TradeDate must lie in the past, while an OrderExpiryDate has to lie in the future. Still, both represent a date and can be considered as two instances of a particular domain type, with different validation rules.

Characteristics like number of digits and decimals, as well as encoding algorithm and null value are usually defined on a domain level.

Domains, in turn, can be further abstracted into base types, e.g. dates and times can both be represented as integer numbers.

Single attributes are used to compose entities like

· Order

· Trade

Again, these are only examples. In its current version, the SWX trading system data model contains

· 53 domains

· 562 attributs

· 108 entities

Approach currently employed

The following class diagram illustrates these relationships.

In this context "class" should, however, not be understood as Java or C++ class. On the contrary, the high number of domains, attributes and entities makes it hardly feasible to write one class per element.

A meta-data based approach can be used instead and is found to be the more advantageous

· … the greater the number of elements

· ... the smaller the difference between them

It also has the advantage of allowing a dynamic change of the data model.

As an example, consider a model with N attributes. Instead of instantiating N different sub-classes of Domain (one per attribute), the same class is instantiated N times. Each instance is initialized with the appropriate values for

· domain

· comparison method

· formatting method

· parsing method

· validation method

In the meta-data approach, the Is-A relation between Attribute and Domain is hence changed to a Has-A relation.

Patterns used

The following patterns are recognizable in this approach to model the data for a financial application.

· Chain of Responsibility: Requests for formatting, validation etc. are passed from attribute to domain to base type, up to the level which can handle the request. This can be used, e.g., to define special formatting for certain attributes

· Composite: Entity's are composed of attributes. A request for validation is passed from the Entity to all attribute before it performs its own entity specific validation.

· Prototype: Entity's can be composed by Attribute instances. Cloning is used to get an instance of an Entity.

Further development

The following issues are still to be resolved:

1. In light of the advent of systems supporting more than one market place, models from different exchanges must be combinable. This is a particular challenge when the same entities exist, but are slightly different. Orders, e.g., exist everywhere and have a price, security and size. Other attributes, however, vary. Also, the domains for price, security and size may be different. An agreed standard methodology for modeling financial data would be more than useful in this effort.

2. Because we are dealing with a domain for which the experts are mostly not proficient in OO design, a specification language understandable for them is needed.

Configurability of the Graphical User Interface

Problem domain description

The data of a financial market is not only difficult to model, but also hard to organize on the user's screen. The user has to be able to compose her display according to her activity profile. A bond trader has different requirements than a share trader; a broker trading for the bank's account works differently from a port-folio manager.

A typical trading Graphical User Interface allows the user to lay out an unlimited number of views on the screen. Such a view may be characterised, among others, by

· position

· behavior (rolling, static, dynamic, insertion of new elements)

· the entities shown and their sequence

· the attributes shown and their sequence

· specific data selection criteria

Approach currently employed

The view's configurability can be modeled by 3 tier approach:

1. InstantiatedView: Instance of the class responsible for representing the view on the screen

2. ConfigurableView: Encapsulation of all attributes the user can change (e.g., name, size, position); generally stored in a persistent store

3. ViewType: Encapsulation of all attributes the user can not change (e.g., behavior, shown entities); generally compiled into the executable or read from a read-only store

ViewType are commonly implemented using a meta-type approach: For each type of view supported by the system, an instance of the ViewType class exists in a catalogue. This approach is found to be the more advantageous

· ... the greater the number of view types

· ... the smaller the difference between them

Some of the ViewType characteristics can not be abstracted into some canonical attribute. In this case, the ViewType holds a prototype instance of the applicable InstantiatedView class.

When a view of a given ViewType is to be constructed, its prototype is cloned. The data from the ConfigurableView and the ViewType are passed to the clone method.

Each view, in turn, is composed of a number of other configurable objects, like columns, selection criteria and sorting criteria, which can be composed as well. For these components the same 3 tier approach as for views is used accordingly.

Patterns used

The following patterns are recognizable in this approach:

· Prototype: Complex attributes of Types are kept as instance of the corresponding instantiated class; note that, other than in the classic Prototype pattern, the clone method takes Configurable (and hence ComponentType) information as parameters

· Composite: Views are composed of other configurable objects, all following the same 3 tier, prototype based approach; save and restore requests for the Configurable are forwarded through the whole of that composite

· Flyweight: Type's are shared as Flyweights between Configurable's.

Further development

The following issues are still to be resolved:

1. A description language allowing business personnel to specify ViewTypes and their components would be very useful. This would allow to bridge the gap between the software designers and those with the business knowledge and to short-circuit the analysis — specification — implementation cycle.

Some Reflections on Building a Reflective Framework

Martine Devos, IS Manager Argo (mdevos@argo.be)

Michel Tilman, Senior System Architect Unisys, (mtilman@acm.org)

Context

This paper describes some experiences in implementing a meta-driven, reflective object-oriented framework. We use the framework to build applications in administrative environments. These applications often share a common business model, and typically require a mix of database, document management and workflow functionality.

The framework uses a repository to store meta-information about end-user applications. This includes object model, object behavior, constraints, specifications of application environments (initial views on the shared model), query screens, layout definitions of overview lists and forms, authorization rules, workflow process templates and event-condition-action rules. Fully operational end-user tools consult this meta-information at run-time, and adapt themselves dynamically to the application specifications in the database. Thus we effectively separate specifications of a particular organization’s business model from the generic functionality offered by the end-user tools. Rather than coding or generating code, we develop end-user applications by building increasingly complete specifications of the business model. These specifications are available for immediate execution.

Dealing with change

Users and developers are becoming increasingly aware that change is a constant factor and that most applications are never truly finished. Hence the need to make design for change a primary goal of most, if not any, architecture. This goal applies equally well to end-user applications and to development tools.

To support this development process we built a framework. Frameworks tend to go through several iterations before converging to a stable product. But even mature frameworks need to evolve, although often at other time-scales than the end-user applications and the development toos. Sound object-oriented software engineering practices often enable developers to localize the impact of changes. Yet some architectural designs or requests for change are not properly met without additional techniques.

Reflection has many uses. For one, it enables us to dynamically ‘reason about’ and ‘manipulate’ applications. But when the reflective facilities are sufficiently expressive, we get additional advantages. True reflection empowers us to intervene at the right spot, in order to achieve the right balance between minimal intervention and the required impact. For these reasons we opted for Smalltalk as the development environment for our framework.

The reflective architecture of our framework is separate from the reflective facilities of the underlying development language. Thus there is no reason why we could not have used a more static language, such as C++ or Java. Yet we are convinced that we would not have been able to assimilate and incorporate lessons learned from past experience quite as well in any of these languages and environments. In fact, the very objectives of the initial Smalltalk environment have always been a major source of inspiration for our framework: a framework that evolves, designed to build applications and tools that evolve, relying heavily on meta-information, bootstrapping and reflection.

And even if, in absolute terms, only a very small percentage of our code actually uses Smalltalk reflection, it is always reassuring to have that extra headroom, just in case it is needed.

Building a meta-repository based framework

Although we designed our framework from the start to be driven by a repository of meta-information, it has evolved considerably over the past few years. The evolution happens essentially as follows: when we add hotspots to the framework, we determine whether these hotspots are more related to generic and re-usable functionality, such as printing or entering data, or are more business-related, such as business rules and models of data and processes. For instance, at the framework level we provide hotspots to add new editors for entering data. At the application-development level we specify which editor we want to use when designing a form layout.

Thus we reify high-level specifications from business-specific hotspots in the framework components and adapt the framework to interpret these specifications. We store these specifications in a central repository to make them dynamically available. A few of these hotspots are driven by what is typically regarded as regular data, such as the login user, but most specifications represent meta-information about the end-user applications: e.g. object model, business rules and list and form layouts.

Thus our basic architecture uses a repository containing object- and meta-level information. In an initial phase we developed end-user tools consulting the meta-information, and development tools producing the meta-information. What the user perceives as an application is actually a representation of the meta-information suitably filtered by the tools.

We wanted to keep the number of tools as small as possible, so we started to bootstrap the system. In this process we discard original hard-wired development tools in favor of tools developed in the system itself. Thus the development tools (and in fact, the end-user tools) consult and produce the meta-information. This approach has another important benefit. Just as end-users tailor the applications to their proper needs, application developers can now easily customize and personalize the development tools as well. To achieve this goal, we had to model the meta-information explicitly in the system itself.

But there are other ways of bootstrapping the system. We also wanted to keep the kernel meta-model and repository as small as possible. Thus we focused on giving application developers the means to e.g. define their own types of constraints and even enhance the basic meta-model, using the available tools. Expressing the meta-model in itself and storing it into the repository opens up the field for some of these exciting possibilities (although this is still in an exploratory phase).

Putting the reflection to work

Once more we can take a look at what makes Smalltalk work. Smalltalk reifies a large and relevant part of its meta-structure and tools, and turns this reified information into first-class objects. The net -and important- result is that object- and meta-level objects freely communicate.

In our framework we model most relevant aspects of the meta-information explicitly, such as object model, script rules, workflow process templates and application environments. We represent objects as dynamically typed structures. The variable state pattern takes care of mapping object properties onto the actual values. Meta-information can be treated as regular data and associated with object-level information. Authorization rules, for instance, use both object- and meta-level information to achieve the right degree of expressiveness.

In a similar way we model scripts explicitly. For instance, object behavior is implemented by means of scripts associated with object types. Adding thesaurus keywords to classify and query methods, or implementing collaboration contracts can be achieved through mere modeling, without the need for additional tools.

In fact, in some cases where we are investigating possible additions to the framework functionality, such as query-by-example, it has become possible to build a simplified prototype in the system itself, instead of building a hard-wired prototype.

Dealing with specifications

Using specifications has many benefits. For one, specifications narrow the gap between the user’s perception of his real-world business activities and the effort required to get the tools supporting his job. Specifications are often also more concise and easier to analyze and reflect upon.

We found another useful yardstick to the measure how effective the specifications really are. In the course of the project we changed the nature of the specifications several times, particularly with regards to meta-model, application environments, stored queries and layouts.

This is roughly analogous to, say, changes in an API. The applications using the API must be modified, typically manually, one by one. In our case we write scripts to convert the specifications from one format into another. Only in a few cases did we intervene manually. For instance during our recent conversion of stored queries, about 10 queries were not converted correctly, out of a total of 800. Rather than spending some more time to get the conversion script right, we corrected the few ‘bad’ queries manually. In practice, converting specifications does not turn out to be harder than converting regular data in traditional database applications.

We have the additional benefit that, as of now, our repository contains only about 300 hundred scripts in constraints, methods and event-condition-action rules.

Bridging environments

As we shift more responsibilities to the meta-repository, we may loose some of the support from our regular development tools. In some cases we need to re-create some of this functionality in our development tools. For instance, Envy, despite many shortcomings, provides some useful tools to transfer and compare applications across different libraries. Since we typically use several repositories in various phases of the development process (prototyping, testing and delivery in production environment), our application developers need appropriate import / export tools. We are currently enhancing our existing import / export tools to better support this process.

Similarly, we need extra consistency maintenance tools, for instance to detect conflicts between methods stored in the repository and ‘primitive’ methods in the Smalltalk class library.

Testing

About a year ago we started building a testing tool, based on Kent Beck’s test framework. But given our framework approach, it is easy to configure a test application in the system itself.

For instance, in this application we list the object types and properties to be tested, and add queries and layouts. With just a few scripts we can enumerate the queries. We execute each query, once for each overview list layout (the query specifies the ‘where’ clause, the list layout the ‘select’ clause). For each query execution we open the form tool on the result. Then we browse through the list, going through all available form layouts for each object.

Having set up such a generic testing application, we only need to supply the appropriate meta-information.

Performance issues

Given the dynamic nature of our framework, we must pay ample attention to performance. Detecting and optimizing typical usage patterns becomes extremely important because the end-user has so many opportunities to adapt the applications. In contrast to more hard-wired applications, however, we need to apply these optimizations only once, at the framework level. If done appropriately, most end-user applications and development tools ultimately benefit.

This is particularly relevant for the query generator component. The queries created explicitly (in the query editor and list tool) and implicitly (in the form tool) by the user are expressed in a high-level query language. There are usually many ways to translate a given query expression into a SQL statement, hence it is important to get the query generator right. We had the additional problem that our (old) database server exhibits some highly unpredictable behavior. We ended up with pre-processing the queries based on simple statistical data. In addition to this generic strategy, the query generator consults domain-specific hints. This is similar to, say, the Smalltalk virtual machine, which is optimized for typical usage patterns, but may be influenced by application-specific policies, such as the memory management policy.

This approach hints that the very dynamic nature of the architecture can be applied to solve at least some of its own weaknesses, since the tools can reflect to a large degree on the application specifications. The authorization rules, for instance, when executed single-mindedly, tend to be rather computation intensive in some of our applications. By analyzing the rules, our framework components dynamically extend the queries with authorization-related constraints to reduce the number of queries. And in several cases the tools deduce automatically that some rules need not be checked at all. Currently, we only have a couple of object types for which a ‘pure’ object model (i.e. without any redundant information) continues to present some problems, performance-wise, with regards to the authorization rules.

Some examples

A simple example

The following script is a simple example of the scripting language we may use when developing applications.

City select: [:city | true] load: #(name zipcode state)

In this example we retrieve all instances of the object type ‘City’ (hence the true ‘where’ clause), requesting only the name, zip code and state properties to be retrieved, i.e. we are only interested in partial information.

In the process we:

· use the Smalltalk reflective facilities to convert this expression into a high-level query expression

· convert the query expression into an SQL statement

· set up the appropriate caches

· set up a streamer and define a suitable variable-state template to represent the objects retrieved from the database in a compact form

· retrieve and cache the objects.

In this process we dynamically consult both object-model and meta-model. The total time is less than 1.3 seconds when using an Access database through ODBC, for a total of more than 2800 objects (in this example the client runs on a Pentium 233 MHz MMX with 64 MB of memory).

A testing example

[image: image2.png]

In this example (some items are still in Dutch) we queried all schools, retrieving the name, phone, dean and street attributes (top-left window). We opened a form on the result (bottom window). The form tool dynamically selects a suitable layout for each object in the list, checks the authorization rules to determine whether any field should be left blank and determines the properties to be retrieved from the database. In this case we need to load the ‘Code’ attribute, and two associated objects (‘City’ and ‘Local board’). For each of the associated objects we display an attribute (name of the city and number of the local board). In this case the form decides it is more appropriate to perform only one query to retrieve the ‘Code’ attribute and the associated objects. In the process, the object unfolds from a compact representation in the overview list to a regular object, with enough slots to contain all the properties. This is one of the other cases where we use the Smalltalk reflective facilities. Note that, here too, we dynamically consult object- and meta-model.

The top-right window displays a testing script rule (configured in the system itself). The script rule, when triggered by a menu event, goes through the process described above for each school in the list (this script does not attempt to intercept errors). In this example we average 7 to 8 schools per second.

Combining the dynamic and the static

Occasionally we encounter generated SQL-statements that go way out of bounds. Thus we keep refining our generation strategy. Yet it is important to note that potential performance problems result from complex queries rather than from large tables. Currently we do not have tables containing more than, say, a couple of hundred thousand records. Hence it is not always easy to predict how our approach would scale up to million-record databases, in particular with regards to queries created by the end-user in the query editor.

We could provide the option to attach optimized queries to stored queries, and to list and form layouts. In case the user modifies the layouts and queries, we would invalidate the optimized query (this can be configured in the system itself, using the business rules). In fact, there is no reason why most of these optimized queries could not be generated by the framework itself: a simple user-assisted tool could explore the most relevant alternatives and return statistical information about the results. Thus the user himself would effectively be able to optimize most of the queries.

We do not provide this hybrid strategy right now (though it would not be too hard to implement), but it is always reassuring to know we still have several tricks in store in case the going gets though. In fact, the sky is the limit.

References

Martine Devos and Michel Tilman, A Repository-based Framework for Evolutionary Software Development (Mohamed Fayad and Ralph E. Johnson, ed.), Wiley Computer Publishing, 1998

Michel Tilman, A Repository-based Framework for Evolutionary Software Development, MetaData Pattern Mining Workshop, University of Illinois, 1998 (http://www-cat.ncsa.uiuc.edu/~yoder/Research/metadata/Uol98MetadataWkshop.html)
Meta-data and Active Object Model Pattern Mining Workshop

OOPSLA '98 Workshop Submission

David E. DeLano
AG Communication Systems
delanod@agcs.com
2500 W. Utopia Rd.
Phoenix, AZ 85027
(602) 581-4679

Copyright (1998 AG Communication Systems Corporation. All rights reserved.

Permission is hereby granted to the OOPSLA '98 workshop on Meta-data and Active Object Model Pattern Mining Workshop to copy and distribute this document as part of the workshop documentation in both electronic and printed form.

Designing Flexibility into a Telephony System

One trend in the telecommunications industry is to add components into the network that modify the behavior of events through the system. These peripherals are known collectively as IN or Intelligent Network. Many new and changed features can be introduced into the telephony network without modifying the underlying architecture of telephone switches that has been in place for many years.

While developing one such IN peripheral, it was decided that a more flexible component architecture was needed to aid in the development of new features and to decrease the time that it took to develop them. A framework known as the Service Request Broker Architecture, or SeRBA, was developed. This framework has characteristics that can be exploited to develop a highly configurable system. No current product uses this capability, but with a few minor changes the capability exists.

The SeRBA framework is highly patterns based. The underlying architecture is the Broker. The framework also uses Proxy, Visitor, and Factory Method among other Design Patterns. Without including a multitude of UML diagrams, I'll attempt to describe the framework.

The basis of the framework is two classes: Transceiver and Parcel. The Parcel is the interface into a given Transceiver. A Transceiver performs a service for the system, and has the capability to send or receive a Parcel. Upon receiving a Parcel, the Transceiver generally performs an operation specified according to the type and contents of the Parcel.

There are several specialized Transceivers in the SeRBA framework. The RequestBroker is the Broker for the architecture. The RequestBroker has a Registrar where registration of services of Transceivers is recorded. Incoming messages are handled by a Receiver, which uses a Factory to turn the message stream into a Parcel. A Proxy reverses the process to send a Parcel to the outside world.

A simple scenario is that a Receiver takes a message from the incoming data stream, uses a Factory to create a Parcel, and routes the Parcel to the RequestBroker. The RequestBroker looks up the service provider via the Registrar, and routes the Parcel to the appropriate Transceiver. A Visitor, double dispatch, sequence is used to associate the Parcel with the correct service request in the Transceiver.

The underlying architecture of the SeRBA framework is ideally flexible, but in most implementations tends to be more rigid. In practice, two areas have not been exploited for flexibility. The first is the Transceiver/Parcel relationship. The second is the Registrar.

For every service that the system needs to perform, a Transceiver needs to implement the service and a Parcel needs to encapsulate the interface for the service. A Transceiver may be capable of receiving multiple Parcel types, but it must implement a separate service for each one. Intuitively, Transceivers should be single service oriented to allow more flexibility in designing a system. Thus, most system designs only call for a collection of Transceivers that implement the features in the design. There is some flexibility in that Transceivers developed for other systems may be reused with little modification. However, no scheme has been developed to add Transceiver/Parcel pairs at run time.

The current implementation of the Registrar is similarly inflexible. The current Registrar contains a table of services which is indexed by the requested service and returns a reference to the Transceiver which has registered to perform the service. Note, however, that this is a fixed table. Each Transceiver registers its services with the RequestBroker at run time. It is only the indexing of the table that is fixed, i.e., the services to be provided by the system are known at link time and are not changed at run time.

Ideally, a set of Transceivers should be developed that provide common services. These Transceivers (and their paired Parcels) could then be used to plug in to any system being developed. The Registrar should provide some sort of service to Transceiver translation storage that is dynamic. The system would still have to be linked with all possible service providing Transceivers, but they could register services dynamically. This would give the system more flexibility in the services it provides.

First-Class Views:

A Key to User-Centered Computing and Slimmer Tiers

Arnon Rosenthal

The MITRE Corporation

arnie@mitre.org
Edward Sciore

Boston College and MITRE

sciore@bc.edu

abstract

Large database systems (e.g., federations, warehouses) are multi-tier, comprising several virtual or physical databases, each derived from other tiers. Our goal is to make such databases more user-centered, i.e., to allow users (including administrators) to work mostly within their native view. We claim that this is possible if the database system can support first-class views. We illustrate how such capabilities would make such databases substantially more usable, flexible and maintainable. We also suggest that enterprise object architectures built using first-class views can have thinner, cheaper, more flexible tiers. Because this approach uses views to describe interrelationships among tiers, database technology can have a larger role in such architectures, beyond providing persistent storage at the bottom-tier manager. We then outline our proposal for supporting first-class views, which involves using propagation rules to componentize view semantics. Finally, we present some research problems that arise.

1.
Introduction

Views have enormous versatility, practicality, and importance [Rous98], but also several serious shortcomings. For example: Views are restricted to read access except under special circumstances, with limited support for updates and change monitoring; metadata defined on base tables (such as data quality, origin, and creation info) does not propagate up to views, and cannot be read or modified; error messages from the system are presented to view users in terms of base tables; and schema changes (e.g., adding and deleting columns to view tables) are not allowed. Furthermore, there is no external mechanism for extending standard operations to wider classes of views (e.g., to define view update on views that include outerjoin or multiplication by a constant), or for defining new generalized operations (e.g., change_notification).

In large, distributed, multi-tier systems (such as data warehouses and federated database systems), these limitations cause significant problems for both administrators and end-users. Administrators at a view tier are forced to perform their work in terms of tables belonging to other tiers. These tiers may have large structural and vocabulary differences between them, making this “schema-shifting” between tiers difficult and cumbersome. End-users at a view tier, in order to get the desired interaction with their data, must go through applications that interface with the source tiers. The code for these applications manage the semantics of update operations, error handling, metadata propagation, etc. Tiers can become “fat” with all of this code, which is costly to build and maintain.

Our goal is a database system (or perhaps middleware) that provides tools and services to support tiers as first-class views. Data administrators would define the static semantics of a view tier (using SQL statements), as well as its dynamic semantics (discussed in Section 3); the system would then automatically generate the code needed to connect the tier to its sources. Tiers thereby become slimmer and more maintainable, and more user-centered. That is, users at each tier might know that their database is one of many, but have the illusion that all the databases use schemas that are consistent with the user’s own . To the greatest extent possible, users would feel like they own and are manipulating their own data.

The semantic difficulties of translation through views are well known, and we expect no silver bullet. Researchers have made only limited progress toward sound, complete, unambiguous treatments for operations on views (e.g., for updates [Keller86] and data replication [Mumick96]). Moreover, they did not address how one could extend their facility to allow additional operations within the view query (e.g., attribute arithmetic, outerjoin).

So instead of seeking general, complete solutions, we reframe the problem as “Provide automated assistance to the humans who solve the special cases.” We would consider the automated assistance successful if we could:

· Handle the easy cases automatically. Since many attributes in views are pulled with little or no change from a base table, many kinds of work can be reflected rather trivially.

· Disambiguate by point-and-click decisions, not by coding. Tools already do this for updating a (vendor-determined) set of views. It should be provided for many other sorts of work.

· For difficult expressions, assist the easy parts. One then needs a clean way to plug handcrafted pieces into the system-generated portion.

The purpose of this paper is to give the reader a feeling for the tremendous potential of first-class views, to outline an approach to their implementation, and show the numerous areas in which research is needed.

2. benefits of first-class views

A system that supports first-class views would translate and propagate information expressed against one tier into a form suitable for another tier. Example kinds of propagated information are metadata (e.g., integrity information, access privileges), events (e.g., error messages), and operations (e.g., establish change notification, negotiate corrections). Such a system would allow significantly better interaction between tiers. For example, the data administrator at a view tier would be able to: see the integrity constraints for each view table, automatically translated from the constraints at the source; request that the source administrator modify its integrity constraints so that a view table’s constraints are more appropriate; and in general, negotiate an agreement with the source about what constraints are enforced at each tier. A user at a view tier would be able to verify the correctness or quality of her data, because its properties would be propagated to the view tier; the user could also report suspicious values to the source, because the report would be translated down in terms of the source schema.

First-class views can simplify small databases, by moving administrative tasks to natural, stable conceptual views, away from changing, storage-oriented tables. The savings are probably greatest, though, for the emerging multi-tier enterprise object architectures, in which objects at each tier tend to implement their methods in terms of methods of lower-tier objects. In such a world, databases today are relegated to the role of back-end stores at the lowest tier.

Yet, these multi-tier object-oriented applications face problems similar to the multi-tier database systems described in Section 1. The programmer must think in terms of two schemas – her own tier and the supporting one. Method code is often “fat”, because it must also do generic data management tasks like change propagation. The resulting code entwines business tasks and mapping tasks.

The right role for database technology, then, is to provide data management services for objects at all tiers. The first step is to build the tiers of objects by first defining their data as first-class views of a multi-tier database. Methods that provide and translate all the generic data management work can then be built and maintained by the system. Business methods will be cleaner, and tiers slimmer. An analogous approach is reported in [Goyal96]. They “thinned” the code tiers in Model/View /Controller graphic applications by describing relationships declaratively (in logic) and then automating generation of change-notification code.

3. implementing first-class views

The definition of a view in SQL specifies only a portion of its semantics. Additional information must be specified to disambiguate view updates [Keller86], and even more information is needed to specify the semantics of metadata propagation, operations, etc. [Ros98]. In each of these cases, the additional information specifies how data (or metadata, events, or operations) is to be transformed from one schema to another.

A system that supports first-class views requires three things:

· A means for specifying the additional semantics of a view;

· An ability to use this specification to translate the data when needed;

· A facility for administering specifications, establishing standard vocabulary, etc.

In [Ros98] we propose a framework for such a system. This section briefly describes our approach.

We specify the dynamic semantics of a view by specifying the behavior of each property (or meta-attribute), operation, and event. This behavior is broken into atomic components called propagation rules. Each rule specifies a function to be computed, for a single property (or event or operation), across a single relational operator (such as Join, Select, or Total.). The rule also describes its own scope of applicability, and strength for overriding other rules and for automated operation. For example, consider the property AbsoluteErrorBound, which denotes the maximum amount by which a value can be incorrect. Then one candidate propagation rule is that when a value is computed from two inputs, the result’s property is the sum of the input property values.

The behavior of a property is determined by executing the propagation rule for each node in an operator tree for the view’s defining query. The value of the property in the view can be computed as the composition of the functions associated with each node’s propagation rule.

The specification of all needed propagation rules for a view seems daunting. Fortunately, extensive reuse of rules is possible. For many operators, most properties are propagated using a small number of rules (e.g., for Multiply, either propagate the property unchanged, or to multiply it). The administrator (even a nonprogrammer) can choose among these applicable rules through a GUI. Moreover, in many situations there is a natural default rule, which can be chosen automatically by the system without any user intervention.

It is impossible for a system to provide rules for all conceivable properties. Thus, the system must be componentizable, i.e., it should allow simple, independent steps to extend the operators, properties, and rules. A vendor of a propagation system can provide an initial set of useful rules. But as needs expand, both vendors and their customers need to be able to extend and customize the rule base. Our use of propagation rules satisfies this requirement.

The system should provide tools for performing its various tasks. These include creating and modifying rules, specifying their scope and their strength (i.e., can they apply automatically, do they override other rules), and selecting one of the candidate rules. Vendors, professional administrators, and power users need many of the same capabilities, so the tools should be part of the delivered system. Organizations could contribute domain-specific types and rules, and database administrators would be able to add database-specific rules and override existing ones. Simple tasks might be left to run-time users (e.g., confirming defaults and choosing among candidates).

4. research issues

The development of a facility for first-class views is a large, multi-faceted problem, with significant opportunities for the database community.

The preeminent problem is to create a framework and the supporting tools. Algorithms must be developed to translate information between tiers, as specified by propagation rules. Strategies for immediate, bulk propagation (for when a data warehouse is loaded) and lazy evaluation (for integration with user operations) should be considered. It must also be decided how the translated result should actually be forwarded to other tiers.

Tools are needed for rule administration as well as rule selection. Issues include how to present choices to administrators, how to handle situations where only part of the information is propagated, and semantic and efficiency issues in resolving multiply-applicable rules (with error handling in cases of too many or too few choices). Tools are also needed to support negotiations between administrators at different tiers.

Next, candidate propagation rules need to be identified for each query operator and each kind of property, event, or operation. Some cases are trivial (e.g., propagate unchanged). Many others require applying existing research results (e.g., for determining if a view can be computed from a set of other views, or for tracing a granule back to its relevant inputs). The number of problems is large enough to occupy legions of graduate students, dealing with different query operators (e.g., different flavors of join and aggregation) and different types of properties, operations, and events. The framework makes it easy for results to be componentized and put into practice.
The propagation discussed in this paper handles schema heterogeneity — given differing schemas at a view and source tier, it exploits the view mapping to decide how to propagate additional information between the tiers. The goal is to allow each user to think that all database schemas match the user’s. (The illusion will be imperfect; for some operations, a user must know that other databases have additional tables and attributes, or omit some that the user sees.)

A propagation/translation facility should be able to act as a module in a system that also offers solutions to other problems. One such problem is context heterogeneity; that is, the problem of an attribute that has a different representation in two tiers. For example, the attribute Salary might have different currencies in different tiers. Techniques have been developed to handle context heterogeneity [Sciore94], which may be extendible to schema heterogeneity.

One virtually untouched area concerns the management of constraints in a multi-tier database. Each administrator is responsible for a set of tables. When a constraint predicate or error message is mapped between tiers, how can we maximize the amount that is understandable within an administrator’s sphere of responsibility? What is a good way to present the residue?

Similarly, research on managing multi-tier security policies is wide open. Given a certain set of access rights on the source tier, can we determine whether a user has access to the view data? If not, can the system determine a reasonable set of rights on the source that could be added? Security administrators routinely make determinations like “the individual values are sensitive, but the total is not”, or vice versa. How can policies such as this be propagated to other tiers? Would security policies be different if access rights could be assigned to individual attributes, instead of the entire tables required by SQL?

We have assumed that SQL was used as the view definition language. It will eventually be necessary to expand beyond SQL as the view definition language to include constructs like object-oriented-like operations and relation variables [Miller98].

Finally, there is the pragmatic question of how can better metadata support be inserted into products. Our premise is that metadata is useful and important, and thus propagating it between tiers is worthwhile. However, current systems actually capture and exploit only a small fraction of the potential metadata. This is a chicken-and-egg situation: users don’t require administrators to capture metadata, because their systems don’t support it, and systems don’t propagate and exploit metadata because there is no perceived supply. We hope that as systems support first-class views, the cost of supporting metadata will go down, which will make it worthwhile to collect. The emergence of XML as a standard markup language and RDF as a resource description framework should also encourage metadata collection. Once critical mass occurs, the possible uses of this metadata and the required system support are waiting to be conceived.

5. Summary

Views are one of the jewels in relational theory, and have wide applicability. This paper has argued that first-class views would substantially increase this applicability; for example, it could be possible for the database community to influence the methodology and implementation of large software systems, not just persistent storage subsystems.

Our community has debated “expanding the box” versus “getting out of the box”. Both alternatives aim at expanding the applicability of DBMS engines. We propose an additional direction – to provide good support for interconnected sets of boxes.

We see an analogy with circuit design: At one time, the area of active elements (nodes) was the driving concern; now it is the area of connections. We expect something similar to occur with software systems. The costs associated with building and maintaining the connections, and disseminating work across them, may eventually exceed the costs of the components. The slimmer tiers provided by first-class views has the potential to simplify the management of the inter-tier connections.

6. References

[Keller86] A. Keller, “The Role of Semantics in Translating View Updates”. IEEE Computer (19:1), January 1986, pp. 63-74.

[Goyal96] N. Goyal, C. Hoch, R. Krishnamurthy, B. Meckler, M. Suckow, “Is GUI Programming a Database Research Problem?”. ACM SIGMOD Conference, June 1996.

[Miller98] R. Miller, “Using Schematically Heterogeneous Structures”. Proc. ACM SIGMOD Conference, June 1998, pp. 189-200.

[Mumick96] Views ‘96 Workshop on Data Materialization, Montreal, June 1996. I. Mumick (ed.) ,

[Ros98] A. Rosenthal and E. Sciore, “Propagating Integrity Information among Interrelated Databases. IFIP 11.6 Workshop on Data Integrity and Control, Warrenton VA., 1998.

[Rous98] N. Roussopoulos, “Materialized Views and Data Warehouses”. SIGMOD Record, March 1998, pp. 21-26.

[Sciore94] E. Sciore, M. Siegel, and A. Rosenthal, “Using Semantic Values to Facilitate Interoperability Among Heterogeneous Information Systems”. ACM Transactions on Database Systems (19:2), June 1994, pp. 254-290.

OOPSLA98 – MetaData Workshop Position Paper

Randy Dong

Landmark Graphics Corporation

#2200, 645 – 7 Ave SW

Calgary, AB

Canada

T2P 4G8

Phone:
(403)263-0070

Fax:
(403)262-1929

September 28, 1998

Background

I work for a company that has grown through acquisition. Our division is faced with the problem of integrating 20 applications that were developed by 4 different groups (companies). The applications are of 2 flavors: transaction database systems (operational) and engineering calculation systems (engineering).

The engineering systems mainly use serialized or flat files for persistence but clients have requested we move to a common shared data model across all our applications. The number of distinct data attributes for the engineering systems is on the order of 20,000 (at least 500 tables). The systems are used to provide design and maintenance support for oil & gas wells.

The operational systems are used to capture information during the actual drilling & completion of the wells. This information is captured in an historical database for later analysis. The analysis provides significant input to the engineering systems to help improve designs for new wells. The number of distinct data attributes for these systems is on the order of magnitude of 5000 (at least 200 tables). These have always been on top of a database.

Solution Approach

To solve this problem we decided to build a framework that would:

1. Provide transparent and easy access to a database

2. Make data access transparent regardless of the source of data (eg. from DB, registry or calculations)

3. Allow us to rapidly port existing applications to the new framework

4. Allow us to transparently integrate all our applications

To meet this challenge we based our design on a three-tier system: UI layer, Business layer and a Persistence layer. We felt the UI and Persistence layers were the least stable (would require constant modification and customization) so we considered the Business layer to be the foundation of our framework.

To allow the UI and Persistence layers to be changed we wanted to avoid hard-coding as much as possible. Further, even though the Business layer is the most stable it still needs modifications so we avoided hard-coding this as well.

We developed a declarative language very similar to XML to specify our UI and Business layers. We didn’t use XML because we got started before it was available. Moving to XML is one of our future goals.

The Persistence layer is characterized by a collection of metadata. There is also a significant portion of our Business layer specified in this metadata as well.

To keep us honest, we developed the framework in parallel with 3 engineering applications. The framework team also had significant representation from the operational applications group. We’re in the final “code complete’ stages for these 3 engineering applications (2000 data attributes) as well as the core framework. Design work has already begun on our main operational application.

Metadata

Our metadata data model was greatly influenced by Michael Brackett’s book The Data Warehouse Challenge. He classified several forms of metadata that we implemented in our system. In summary, our metadata data model looks like this (child tables are nested within parent tables; tables listed in bold, attributes are underlined, comments prefixed by REM or within parentheses):

BusinessObject

REM Lists the available business objects

Name

Physical Database Table (if any)

Primary Keys (if any)

Foreign Keys (if any)

BusinessObjectLinks

REM Describes the relationships between business objects

ParentBusObj

ChildBusObj

LinkType (Identifying, Non-identifying, App-specific)

LinkInfo (special join info, if any)

End BusinessObjectLinks

BusinessRules

REM Lists business rules attached to specific business objects

BusObj

PROGID (COM identifier for component implementing the rule)

End BusinessRules

Dictionary

REM Lists the attributes belonging to each business object

BusObj

AttributeName

DatabaseTable (if any)

DatabaseColumn (if any)

PROGID (COM identifier for primary populator of this attribute)

App-specific properties (eg. unit conversion info, etc)

AttributeRules

REM Lists business rules attached to specific attributes

BusObj

AttributeName

PROGID (COM identifier for implementor of this rule)

End AttributeRules

End Dictionary

End BusinessObject

Placing COM PROGID’s in the metadata is what gives this framework its reflective nature. If we need to modify some business rule or calculation we just need to update the metadata with new PROGID’s and the system changes its behavior.

An important property of the dictionary is a one-to-one mapping between attributes and some component that acts as the primary populator. The aim is to eliminate ambiguity regarding what an attribute represents. If there’s ambiguity then the framework (as well as users and developers) can’t make reliable inferences about that data.

Business objects are composite objects made up of multiple COM components. The main, top-most business object class provides access to data attributes in a generic manner. In essence, a business object looks like a query result set. Each attribute is a column of values within that result set.

Contained within a business object is some number of business rules, calculations,and zero-or-one persistence component. These are responsible for populating, validating and/or persisting the data attributes’ data. From a client’s perspective, data attributes are self-populating.

Structure

Everything in the system is coordinated using the Observer-Subject design pattern and a priority queue. Data attributes are the Subjects and all clients are Observers. Whenever an attribute’s data changes, all Observers are notified. If the Observer wishes to take some action it must add itself to the priority queue. An execution sequencer walks the priority queue telling each entry to Execute its action (quite analogous to the Command pattern).

The priority queue’s primary purpose is to prevent multiple execution of the same object. An object adds itself to the priority queue whenever one of its input attributes change. If an object executes too soon, it might re-added to the queue when another object executes. The priority queue ensures everyone executes in order. Priority is determined at runtime based on walking the input/output attribute graph (every object attaches to an attribute as an input or as an output resulting in a directed, acyclic graph).

The application environment behaves very similar to a Web browser. When starting the application, it loads our XML-like template which totally configures the UI. It configures the menus, toolbars, views, etc. It also describes the instances of the business objects. The business object descriptions in the metadata is more like class descriptions. The template descriptions are like instantiations because they request certain sort orders, subsets of columns, grouping, filtering, etc.

RAD

Using data attributes as Subjects allows us to stop trapping UI level notifications (eg. combo-box selection change). All UI controls are wrapped to translate UI actions into data changes. All developers now use “data change notification maps” instead of UI control notification maps. This allows business logic to follow the data instead of being coded within the UI form. Because the business rules are listed in the metadata, UI logic can be reflective as well as business logic.

For example, if an oil well is on land then the “Water Depth” data attribute is not needed. Traditionally, a developer would program the enabled state of the “Water Depth” edit control based on the current state of the “Is Well Offshore” check box. In large applications with 1000s of forms, you can’t manage the UI logic using the traditional approach. Adding data to a new form requires sifting through dozens of files looking for the “definitive” version of the UI logic associated with the data.

Instead, we use Business rules specified via the metadata. These rules modify data state flags attached to each attribute (eg. IsDisabled, IsReadOnly, IsNull, etc). The UI control wrappers inspect these flags to decide how to present the data (eg. enable/disable the control). Everywhere a piece of data is displayed, it obeys the associated business rules. If the rules change we update the PROGID’s in the metadata and every form containing that data start using the updated rules.

With all the business rules (which controls the UI state) contained with the Business layer, it becomes possible to build a RAD environment where a non-developer can layout controls and bind data to them. The resulting form will display just a much smarts as any other form.

One of the weakpoints of current RAD tools is their tendency to bind directly to the database. In our system, all data binding is to the business layer. The RAD user can access any data throughout the system and be assured that all appropriate rules will follow with it.

This feature addresses the application development and integration issues.

Database Integrity

Since the metadata describes the entire data model, we can make inferences about referential integrity. The framework uses the metadata to perform cascading deletes as well as cascaded copies (SaveAs). We operate on multiple database platforms, so we’ve taken the approach of having our framework do this work instead of managing platform specific configuration information.

Whenever adding new records, the metadata tells us what key fields to copy from the parent record. Similarly, when navigating a hierarchy, the links tell us the valid paths as well as what parent key values are needed to scope the child query.

Again, because this information is in the metadata, we can modify it to change the way database integrity is maintained. This use of reflection facilitates data model changes.

Position Paper

My Background:

I am a Master's Degree student working under Ralph Johnson at the University of Illinois. My background is in the modeling of complex biological systems and object oriented programming. Currently my interests include the implementation of object oriented languages and how the use of these languages and their accompanying tools can increase developer's productivity. My thesis centers on the construction of a scientific data analysis packages for doing quality assessments of the health of natural lands. I am also involved in the Linux port of ObjectShare's VisualWorks Smalltalk environment, working primarily with Eliot Miranda.

Two relevant projects:

I am working with the Illinois Department of Public Health (IDPH) to develop a framework of sorts to allow them to easily generate new programs that track various medical testing data. The effort is led by Joe Yoder and Ralph Johnson.

IDPH faces several challenges in this effort. Currently, we are working on programs which track infant immunizations, blood lead screening, and one which tracks screenings for five debilitating genetic diseases. In the past, different teams would develop each of these programs with little inter-team communication. This created a lot of redundant/duplicate code. We are working to help IDPH develop an environment that allows for the rapid development of new applications, a system that must also be able to handle programmer attrition.

The process involves the construction of a library of reusable components which future programmers can use. One of the main problems is that government organizations are not able to respond very quickly to changes in requirements, mostly due to a distribution of responsibility for various aspects of the programs they produce. For instance, if a database change is required for a new project that change will affect all programs produced prior to the new project and the existing programs must be made to accommodate the database updates. There are also many issues regarding the validity of data that is entered into the programs. The validity of a certain set of data might change as time goes by, so abstracting the rules for data validity is quite important. Different hospitals might need variations of these rules, so they cannot be hard coded.

We recognize that it probably isn't possible to build a black-box framework for this purpose, if for no other reason than the necessary flexibility of the system. Our system needs to be able to support all future application development, and hence must allow for the creation of new classes of objects. What we can do is recognize that certain rules exist for the treatment of data, and we can encapsulate/abstract those rules to the extent that new applications need only derive their rules and follow the guidelines for incorporating those rules into the system. This will allow for very simple customization of software to meet the specific needs of individual sites. For example, the Newborn Screening application requires that certain constraints be placed upon the birth date of an infant and the date on which a blood sample is taken. If those rules are abstracted then the logic of part of the Newborn Screening application can be reused for any blood sample-based application that may come in the future. In this way, portions of the Newborn Screening application can be reused for any future application where the blood samples' timestamps need to pass a temporal verification algorithm.

Another reason to incorporate this abstraction is that our system is still in it's infancy. Our database is going through constant changes, and if the developers were not able to abstract the domain-to-database interface we would spend much more time accommodating these changes. To put it simply, it makes our lives easier. In previous systems, even a minor database change required tens of hours to accommodate since the database-specific information was (seemingly) randomly dispersed throughout the application's structure. Certain tools like the Refactoring Browser made the changes easier, but they still involved a "search and replace" strategy at best. In the current system, the application's knowledge of the database has been abstracted to the degree that a single programmer can accommodate most normal database changes.

I am also working on another project, this one for a Chicago company (Conservation Research Inc.). The application is very simple on the domain level (it took only six days or so to implement), but the application/GUI level is more complex. The application is used for the analysis of quantified taxonomic data and generates statistical tables. These tables are used to gauge the health of a plot of land.

The challenge of this application is that different users need to enter their data in different ways. Configurability is a key requirement. Since configurability is only limited by the rules that the developer imposes upon the program, my goal is to abstract those rules to such an extent that the program is capable of accepting those rules from the user, thus enabling the users (who are largely computer-illiterate) to customize their application environments. This is proving to be a formidable task.

Observations:

I have notices that while the software design patterns used in these two systems are very important, even more important are the patterns for organizing the control of the software design/implementation process. It is very interesting to see this, having thought for a long time that the actual design of the software systems would be of the most importance to the overall effort.

When I began the project for CRI in Chicago, I was well aware from my prior experience and training that I would need to make the software resilient to changing specifications that came from things such as the use of alternate regional "databases". These databases are relatively simple monolithic structures that contain information about each of the plant species that exist in a particular region. Due to the nature of biological taxonomy, different regions have different ways of representing the same data, even to the degree that a particular plant might even have different scientific names in different regions of the country. To accommodate such things I abstracted them into first class objects so I could isolate the program from data variations. In this way, I am developing a pluggable interface to the different databases.

This kind of thing is very common in OO design, because we want the resulting software to be easier to maintain and expand to incorporate new facilities. What I've come to realize is that the process I go through as a developer to explore where these kinds of abstractions need to be made in the software model is very similar to the process I've had to go through to isolate myself from changing requirements motivated by the changing attitudes of the clients. My clients are not experienced with application development or with windows environments. As such, they are going through a learning process to discover what the actual specifications of the program are. This is different from having the requirements change due to outside forces in that the changes come from the clients as they discover what is possible in a windows environment (they are used to DOS environments). The solution to isolating the program from these changing requirements is the same regardless of the motivation of the change, but it is very important to recognize the changes that come from the clients as they explore different ways of organizing the program that they didn't realize were possible. To handle both types of change I am attempting to locate where the sources of change are, and encapsulating those regions into meta-data representations.

A very similar thing occurs at IDPH. They have a database (this time a traditional database in DB2) which is being designed at the same time the programmers (including myself) are developing the system that queries the database. Initially, we had a design for our enterprise components that required extensive alteration each time the domain analysts changed the database design. This happens sometimes on a weekly basis. After a while, we started to notice that about half of our time was spent dealing with modifications to the code that needed to be made to accommodate the database changes. Our solution was to form first class representations of the database tables. In this way, we have isolated ourselves from changes that come from the process of the analysts learning what their system should actually look like.

The major benefit I have received from these two experiences is that I now see that I can take advantage of the presence of meta-data not only to buffer my applications from a changing world, but also to buffer them from changes that come from clients as the clients learn more about their domain and how it can be represented by a computer.

Conclusion:

It is widely known that many domain models attempt to model systems which are influenced by outside forces thus creating a need for developers and analysts to try to abstract the meta-qualities from certain "hot spots" in the systems. This is needed in the process of assisting the domain experts in the development of their domain models. What is interesting is that a very similar process occurs as the developers try to elicit program requirements from the domain experts. There are hot spots in this interaction as well, certain places in the applications that change frequently that arise as the domain experts learn about how their ideas can be represented in their application. It has been valuable for me to learn to recognize those hot spots in the development process because they are every bit as important as those that occur in the process of modeling the domain.

A computational model for a distributed object-oriented operating system based on a reflective abstract machine

Lourdes Tajes Martínez, Fernando Álvarez García, Marián Díaz Fondón, Darío Álvarez Gutiérrez,

Juan Manuel Cueva Lovelle

Department of Computer Science, University of Oviedo

Calvo Sotelo, s/n, 33007 OVIEDO-SPAIN

{lourdes, falvarez, fondon, darioa, cueva}@pinon.ccu.uniovi.es

Phone: +34-8-5103368 Fax: +34-8-5103354

Keywords: object-oriented operating system, object-oriented abstract machine, Object computation, object synchronization, active object model

Abstract

The design of an object-oriented operating system (OOOS) involves the design of a model that governs the execution of the tasks. In this paper we show the design goals to build a computation model for an object-oriented operating system based in an object-oriented (OO) abstract machine. We propose to adopt an active object model and we consider features like uniformity, homogeneity or self-contained are essential for objects.

Introduction

The aim of the project OVIEDO3 [1] is to develop an OO integral system where every layer on the system is designed and developed using the OO paradigm. The two OVIEDO3 lowest layers are an abstract machine named CARBAYONIA and an OS named SO4.

The main goal is the design of the OS following the OO paradigm in all the components of the system, including the computational subsystem.

A part of the project will be the definition of the computational model offered by the OS and the abstract machine. We try to endow the system with a concurrency model [3] that maximizes the parallelism degree in a secure way. We have to permit concurrency between objects, between methods of the same object and between several instances of the same method of an object, in the most secure way. There are several ways to introduce the computation mechanism in an OS. We think reflectivity is a very interesting one.

In the next section the aims of the computation model are presented. Then the different alternatives in the object model are shown and, finally, we describe the way CARBAYONIA and SO4 cooperate to offer the necesary mechanisms to support the chosen model.

Carbayonia Abstract Machine

Carbayonia is the abstract machine that supports all the objects of the rest of the system and offers the basic object model. The architecture of the Carbayonia abstract machine consists of four areas (See figure 1):

· Class area. Maintains the description of each class. There is a set of primitive classes defined permanently in this area.

· References area. Stores the references. Every reference has a type (relates to the class area) and points to a object of this type (relates to the instance area).

· Instance area. Stores objects created. At run time, the information of its class can be accessed in the class area.

· System references area. Contains references with specific functions in the machine.

Figure 1. Architecture of the Carbayonia abstract machine.

Each area can be considered as an object in charge of the management of its data. That is, Carbayonia is designed in a reflective way. The main characteristic of the machine is that every action upon an object is made using a reference to it.

SO4: The Operating System

The heart of the Oviedo3 system is the OS, named SO4. The OS offers the abstraction of a single object space where objects exist indefinitely, virtually infinite, and where objects placed in different machines cooperate transparently using messages. Besides, the OS transparently achieves a set of important features: security, persistence, distribution and concurrency.

The master guidelines of the design of SO4 are:

· Intentionally standard object model, with the more common features found in OO programming languages.

· Object as the only abstraction. The unique existing entity is the object, of any granularity.
· Exclusively OO working mode. A object can create classes inheriting from others, create objects from a class, and send messages to other objects.

· Simpleness. To adhere to the above guidelines, whilst achieving maximum simpleness.

These are some important characteristics we wish to impose on objects, in accordance with these guidelines [2]:

· Homogeneous objects. All objects, including OS ones, are treated the same. There are no special objects.

· Self-contained objects. All the information about an object, including processing, is encapsulated in its state. The behavior must not be dependent on other objects.

· Transparency. Objects must not be aware of the existence of OS mechanisms to achieve features as persistence, message passing, distribution, etc.

· Complete semantics. Objects have all the semantics embedded in the object model. They are not considered just as a contiguous memory space.

· Object identity. Each object has a unique identifier, used as a reference to access it.

Goals in the design of the computational system for SO4

SO4 is intended to be an OOOS. So, the computational support must be designed in a way that the OO paradigm is respected. The design goals are [4]:

· Unique, simple and powerful abstraction

SO4 must provide the object as the only abstraction. The OS does not support a process like abstraction that executes the methods provided by the objects. It must be the object itself which executes a method when another object requests it. Conceptually, this is a straightforward idea. But it must be supported by a powerful object abstraction. Each object must encapsulate the processing it is doing.

· Inter-Object Concurrency

SO4 must allow the posibility of several objects executing methods simultaneously.

· Intra-Object Concurrency

Every object must be able to serve more than one method invocation (possibly several invocations to the same method) simultaneously

· Object Autonomy

Each object must maintain and protect its own internal state. So, if intra-object concurrency is allowed, each object will have to decide when to execute the requested methods. If the object has to serve more than one request and they are incompatible, the object must be able to decide, independently of any other object in the system, what to do. It must be able to delay or resume its work.

· Scheduling

To achieve the idea of only abstraction that encapsulates the computation, every object has to fulfil two goals:

· Schedule jobs when a petition arrives. Each object must be able to start a new activity and to schedule the existing ones based on the knowledge of its own inner state.

· Schedule jobs when a reply arrives. The object must react when a reply arrives resuming the adequate job.

· Flexible computation mechanism

Another goal is to offer the computational mechanism in a flexible way [5]. An object or set of objects should be able to adapt it behavior to their particular needs.

· Portability

This model is portable because it is based upon an abstract machine. This machine offers the basic computational mechanisms.

Object Model for Computation

When designing the computational model there are two different alternatives [7] [3]. They define two different models and two different sets of characteristics for the objects.

Passive object Model

This model divides the objects, from the computational point of view, in passive and active objects. The first ones only contain data and methods. They do not have any capability for the execution and, so, they depend on other objects for executing their methods. The second ones provide the computational ability and they are able to execute methods. They represent the execution flow and they can involve methods offered for more than one object. So, their life is independent from the objects they traverse in their execution.

Active object model

This model defines an object with more semantic content. The objects are defined in a homogeneus way like live entities which contains not only data and access methods but their own computing resources. That is, the objects are endowed with computational power.

In this model, the object is an autonomous entity which interacts with another objects in the system. The mechanism used for the comunication is the message passing.

Comparison

The main advantage obtained by the adoption of an active object model is homogeneity [6]. The active model offers a powerful abstraction of the object that fits well with our goals. These objects will be homogeneous; that is, all the objects will have the same properties. Besides, the objects will be self-contained; every object must contain its own private activities.

Because homogeneity, the same comunication mechanism is used to communicate and synchronized any two objects.

In a passive object model, homogeneity is lost. Two kinds of objects are presented. Because this lack of the homogeneity, the interaction between two active objects can not be made with the same mechanism used to communicate two passive objects.

Object homogeneity provides a lot of aditional advantages. The active object model is a powerful help to the distribution and persistent mechanism. The active object model provides a compact view of the object. The computation in the object is transparent to those mechanisms. So, they do not need to develop special mechanisms to distribute or persist computation.

Another mechanisms as object migration and load balancing will benefit too.

The extension of the passive object model to a distributed environment is difficult. And some form of hidden message-passign will be necessary.

Computational model: Reflectivity

Computational system offered by the OS must provide the mechanisms needed for scheduling, concurrency and synchronization. SO4 collaborates with CARBAYONIA to get all these mechanisms. SO4 extends the default behavior of CARBAYONIA in some areas like scheduling, concurrency control and communication.

Carbayonia Computation Mechanism

Carbayonia is the lower support level. It provides the objects with the most basic mechanism for the execution of their methods and the communication.

Because Carbayonia is an OO Abstract Machine, it offers its resources as a hierarchy of classes. Objects can be instanced from these classes. Besides, Carbayonia offers a reduced instruction set.

The classes offered by Carbayonia are basic classes. That is, Carbayonia executes directly the methods in these objects. The execution is tomic, without interruption and synchronization is not necessary.

Carbayonia maintains a basic class named thread that represents the execution of a specific method in a specific object. The methods of this object are: suspend, resume, start, ... with the usual meaning. The invocation of these methods allows the abstract machine to suspend or resume the execution of a job giving the basis for concurrent executions.

So, when an object receives a new message, it can create a new thread to represent the execution of the request. To fulfil the self-contained goal, the objects maintain a list of references to their thread objects and manage them.

Carbayonia offers a set of instructions. The most important for computation are:

· Method Invocation

This instruction informs to an object that the execution of one of its methods is requested by another object. Conceptually, a new thread will be created in the target object to serve this request.

· Exception Mechanism

The machine can communicate with the objects with a mechanism similar to the message passing. This is the exception mechanism. The machine raises an exception when a specific condition is reached. This provokes the current thread tries to capture the exception and handle it. If the current thread can not manage the exception will be necessary to propagate it in the call-reply chain.

Reflectivity

Traditionally, programs had to make its task in a limited computational environment. But, today applications present an increasing complexity. New applications need mechanisms for multithreading, distribution, persistence, migration, load balancing, etc.

Some ad-hoc extensions to traditional systems have been implemented for support these mechanisms. But this solution is quite inflexible.

The ideal solution should be providing applications with new mechanisms. The applications, then, could define the behavior of its environment and modify or extend it if needed. We think reflectivity is a fundamental concept to get it.

Reflectivity can be expressed in two ways: structural reflectivity and behavioral or computation reflectivity.

Structural reflectivity reifies structural aspects of a program like inheritance. An example is the Java Reflection API.

Computation reflectivity reifies the computational aspect and defines the environment where the base actions are executed. This is the most interesting aspect for us.

Figure 2. Behavioral Reflection. The computation of objects A, B and C transfers control to the meta-level

Computational Model in SO4

The CARBAYONIA abstract machine offers the basic mechanisms to implement a computation system: communication (the CALL instruction), scheduling (time interrupts) and concurrency (machine objects called thread) but the exact behavior of the machine is build with the basic mechanisms and the extensions provided by the applications.

Besides, because the decission to adopt an active object model, the computational model will be express providing some special characteristics to the objects. So, every object will be able to manage its own computation.

Reflectivity is used to extend the machine behavior and is expressed transforming an object in a superobject. The set of objects, which transform an object in a superobject, will be named the object environment.

So, user objects construct some aspects of the abstract machine. For example, when some instructions of the abstract machine (CALL) are executed, the actions for this instruction are especified for a meta-object. (See Figure 3).

Figure 3. The object environmet extends the abstract machine

17.1 Object Environment

The environment where object activities are executed must provide the objects some abilities. These abilities traditionally were part of the OS functionality. Traditional operating systems offer them using system calls or distinguished system objects.

But these mechanisms are inflexibles. Our aproximation is different. We think reflectivity can help us to get an OS that fulfils the goals named in section 4 in a flexible, adaptable and transparent way.

The key idea in the design will be to divide the object world in two levels: base level and meta-level. This meta-level will consist of a set of objects so the uniformity is maintained.

Each object in the base level will be supported by a set of meta-objects. Each one of the components will describe some aspect of the base-level behaviour of the object. This is a popular idea already studied in [8] and [9].

The object environment can be subdivided in three diferent parts:

· Execution Object. It maintains a set of ready threads in the object. It can schedule them and decide which one is the most adequate to execute.

· Communication Object. It takes charge of sending and receiving messages. It can propagate exceptions.

· Synchronization Object. It decides when is secure to pass a thread to the execution object or when is convenient to delay a thread.

Conceptually, each object asks its meta-objects to do something, sending a message to it. The methods in the metaobject are executed in a sequential, not interruptible and exclusive way. Consistency of the inner state and secure processing of the messages are guaranteed.

Figure 4. Interaction between base-level and meta-level.

1: Source object transfer control to its communication meta-object. This meta-object sends the message to the target object and takes charge of synchronization (if synchronous message-passing).

2: In the reception of a message, the target object transfers control to its communication meta-object. This meta-object receives the message and will return the result.

3: Communication meta-object sends a message to the synchronization meta-object. This one will study the convenience to start or delay the execution of the requested method.

4: If the requested method is adequate for execution, the synchronization meta-object will notify the scheduler meta-object to the presence of a new job.

Scheduler meta-object

It takes charge of managing the ready threads in the object. It manages the threads waiting in a synchronous invocation too. The set of threads is divided into two disjoint sets and the threads can be moved between these two sets.

· List of ready threads. Some scheduling policy will be applied over the threads in this list. The scheduling policy is particular to each object. Even, it´s possible for an object to decide to avoid the overhead caused by a private scheduler. So, the object can delegate in a global scheduler object or in a per-appliction scheduler object the task to schedle its threads.

· List of waiting threads. These threads will be waiting in a synchronous call. They will be moved to the above list when the reply arrives.

This meta-object communicates with the high-level scheduler object and with the abstract machine. When the high-level scheduler decides one object is the most adequate to execute, the execution meta-object of the chosen object will decide which thread to execute. This meta-object will ask the abstract machine to start or resume the execution of this thread object. The abstract machine will start to execute the instructions pointed by this thread.

Communication meta-object.

It takes charge to send and receive the messages and to manage them. Each message can be a request, a reply or an exception and there is only one method to manage all of them. The propagation of the exceptions is considered as a particular case of the call-reply chain.

This meta-object builds the message and executes the adequate instruction machine.

Hand-off is used in the message passing. So, when an object sends a message to other, the first will give up some time to the second. The target object will execute the operations needed to receive a message. It must evaluate its inner state and decide to create a thread to serve the request or delay it.

Synchronization meta-object

Two synchronization mechanisms are offered to an object. The first is a coarse-grained mechanism. It stablishes exclusion between incompatible methods. The second is a fine-grained one. The OS offers a semaphore class with the typicall functionality and semantic.

Synchronization meta-object covers the first option. For each object method, m, it maintains a list of methods, M. M represents the set of methods whose execution is incompatible with the execution of m.

To avoid dangerous executions, when a method is invoked in an object, this meta-object decides to execute or to delay it, based in the information above.

When a thread finishes, the synchronizatoin meta-object tests if any other thread in the specific list can continue. This meta-object can specify a special order to evaluate the messages.

Other synchronization schemes can be implemented for specific purposes.

17.2 Scheduling

Scheduler objects will realize scheduling tasks. These scheduler objects are not different of any other objects in the system because the homogeneous object model provided.

So, it is possible to insert new scheduler objects to provide scheduler functionality to a particular set of objects. It is possible to change a scheduler object for another, which implements a different policy. Even, it´s possible to remove a scheduler object.

By default, there is a general scheduler object in the system. The abstract machine knows it and its reference is one of the system references. The abstract machine will give it quantums of time. The scheduler distributes this time following a specific and modifiable policy. It is possible to insert new schedulers that implement a special policy.

Each scheduler maintains a set of thread objects and it gives up machine time to them. Each thread can be serving a request made by an object or it can be doing inner tasks in the object, for example, inner scheduling.

In the same way, every scheduler object installed by a subsystem or application, will be an object schedulable by other schedulers. The high-level scheduler will give execution time to them. And they distribute it between their objects.

At the lower level, even each object can have an inner scheduler to schedule its own hilos following a specific policy. But, if the object decides to avoid this overhead, it can employ a pre-existent scheduler.

A scheduler hierarchy is created in a transparent way.

When the time finishes, the thread will return the machine control to the scheduler that gave it the time.

17.3 Advantages of a reflective abstract machine as the basis for an OOOS

Flexibility is the main advantage obtained offering the os mechanisms as extensions of an abstract machine. Each object or application can offer its own meta-objects. These meta-objects modify the standard behavior of the machine adapting it to specific requirements.

Uniformity is maintained because the operating system mechanisms are offered in an object-oriented way. No new abstraction is introduced.

The objects are self-contained and are endowed with the mechanisms needed for the computation management. So persistence can be complete because to persist computation is a straightforward extension to traditional persistence. Besides, distribution obtains some advantages from self-contained objects for object migration.

Conclusions

Computation system is a key component of any OOOS. Because the uniform application of the OO paradigm in all the components of the system, we endow the objects with computational power. An environment or set of objects will support each object. These objects provide the basic behaviour to the base object and allow it to execute, synchronize and comunicate.

Reflective architecture of the OS is a promising way to provide a flexible, modifiable and extensible environment.

References

[1] Cueva Lovelle, J.M., and others, Sesión “Sistemas Operativos Orientados a Objetos: Seguridad, Persistencia, Concurrencia y Distribución” (Object-Oriented Operating Systems: Security, Persistence, Concurrency and Distribution), II Jornadas sobre Tecnologías Orientadas a Objetos, Oviedo, Spain, March 1996. (in spanish).

[2] Álvarez García, F., Álvarez Gutiérrez, D., Tajes Martínez, L., Díaz Fondón, M.A., Izquierdo Castanedo, R., Cueva Lovelle, J.M., “An Object-Oriented Abstract Machine as the substrate for an Object-Oriented Operating System”, Workshop on Object-Orientation and Operating Systems, 11th European conference on Object-Oriented Programming (ECOOP’97), Jyväskylä (Finland), June 1997

[3] Chin, R.S., Chanson, S.T., “Distributed Object-Based Programming Systems”, ACM Computing Surveys, Vol. 23, N.1, March 1991

[4] Nierstrasz, O. “Composing Active Objects. The Next 700 Concurrent Object-Oriented Languages”, In Research Directions in Object-Based Concurrency, ed. G. Agha, P. Wegner, A. Yonezawa, MIT Press, 1993

[5] Cahill, V., “Flexibility in Object-Oriented Operating Systems: A Review”, 3rd CaberNet Radicals Workshop, Connemara (Ireland), May 1996

[6] Nierstrasz, O. “A survey of Object-Oriented Concepts”, In OO Concpets, Databases and Applications, ed. W. Kim and F. Lochovsky, ACM Press and Addison-Wesley, 1989

[7] Briot, J-P., Guerraoui, R., “A classification of various approaches for Object-Based parallel and Distributed Programming”, Technical Report. University of Tokyo and École Polytechnique Fédérale de Lausanne, 1996

[8] Golm, M., Kleinöder, J., “MetaJava- A platform for adaptable Operating-System Mechanisms”, Workshop on Object-Orientation and Operating Systems, 11th European conference on Object-Oriented Programming (ECOOP’97), Jyväskylä (Finland), June 1997

[9] McAffer, J., “Meta-Level Programming with CodA”, ECOOP’95, Aarhus (Denmark), 1995

Metadata

and

Active Object-Models

Brian Foote

Joseph Yoder

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. Springfield

Urbana, IL 61801

foote@cs.uiuc.edu (217) 333-3411

yoder@cs.uiuc.edu (217) 244-4695

Monday, 5 October 1998

Abstract

A number of forces shape the way in which software evolves. One is a desire to make programs as general as possible. Another is to push configuration decisions out into the data. Yet another is to push them out onto the users. Still another is to defer such decisions until runtime.

The patterns herein explore how complexity migrates from the code to the data as systems mature. As data become more sophisticated, the power that can, in turn, be brought to bear upon them at runtime increases.

This paper presents several patterns from a larger, emerging pattern language: It focuses on PROPERTIES, and observes that three distinct intents underlie what have commonly been called "properties"

Introduction

A number of forces shape the way in which software evolves. One is a desire to make programs as reusable as possible. Another is to push configuration decisions out into the data. Yet another is to push such decisions out onto the users. Still another is to defer such these decisions until runtime.

Data themselves become more universal and reusable when they are accompanied by descriptions of themselves that let other programs make sense of them. They can become even more independent when they are accompanied in their travels by code.

The patterns in our emerging pattern language begin to chronicle how domain specific languages emerge as programs evolve. A program may begin simply, performing but a single task. Later, programmers may broaden its utility by adding options and parameters. When more configuration information is needed, separate configuration files may emerge. As these become more complex, entries in these files may be connected to entities in the program using properties, dynamic variables, and dialogs. Simple values may not suffice. Once properties and dynamic values are present, simple parsers and expression analyzers often are added to the system. This, in turn creates a temptation to add control structures, assignment, and looping facilities to the functional vocabulary provided by the expression analyzer. These can flower into full-blown scripting facilities.

After a while, the domain or business objects come to constitute a program of sorts, which can be dynamically constructed and manipulated by users themselves. During this evolutionary process, descriptions of the data, such as maps of the layouts of data objects, and references to methods or code, are needed to permit these heretofore anonymous capabilities to be accessible during runtime. These descriptions allow these objects to be composed, edited, stored, imported, exported, and (these are programs, after all) debugged.

As this evolutionary process unfolds, and the architecture of a system matures, knowledge about the domain becomes embodied more and more by the relationships among the objects that model the domain, and less and less by logic hardwired into the code. Objects in such an ACTIVE OBJECT-MODEL are subject to runtime configuration and manipulation like any other data. Changes to this runtime constellation of objects constitute changes to the model, and to the operations that traverse or interpret it.

Data that describe other data, rather than aspects of the application domain itself, are called metadata. Naturally, these layout and code descriptions should be objects too. Hence, metadata have metadata as well.

A successful application inevitably draws a crowd. A host of users on a hosts of hosts will want to use such a program, and the data that go with it. It is important that data produced by one copy of the program be usable by other users at other sites. Such data might reside in a shared or distributed repository such as a database or persistent object base. They might also migrate across a network, via wires, satellites, fibers, radio waves, and even diskettes or tapes.

It is important, too, that these data be accessible not only from copies of the applications that spawned them. Other programs must be able to deal with them as well. When such data are mere "punch card images", or undifferentiated byte streams, this is hard to do. However, when data are escorted by machine readable descriptions of what they mean, they become welcome in a wider range of processing venues.

Our story then, is about how data earn their wings. It chronicles the forces that drive data to become more general. It describes their ascent from digits on punch cards, to lines on data files, and bytes in streams,

through structures, and on through their marriage to behaviors, which begot objects. It continues as the need to describe these objects incubates self-descriptions, which themselves are cast as objects, which, in turn, allow objects to aspire to escape the processes and images in which they were trapped, and roam unencumbered across the network.

The drive to become more general begins modestly. A simple application may acquire command line switches and parameters, to allow its behavior to vary, or permit additional input streams to be specified. As a program becomes yet more general, additional configuration information may be needed. This information may complex, and may even be provided interactively, by end users. Simple, textual interfaces may yield to graphical user interfaces, which themselves may grow more powerful, and, alas more complicated.

As an object-oriented application evolves, the elements of a object-oriented framework emerge. Where raw, undifferentiated, white-box code once was, dynamically pluggable black-box components begin to appear. Internal structure, which was once haphazard, becomes better differentiated, and more refined.

As such a framework evolves, the these elements themselves, together with the protocols and interfaces they expose, come to constitute a domain specific language for the framework's target domain.

Often, something else happens as well. The configuration user interface and tools grow more powerful too, so as to expose more and more flexibility and power to the users. At first, simple parameters are exposed. Later, expressions and simple logical rules may be proffered. Finally, control structures might emerge, and the full power of this emerging language is exposed to the user. Users may be offered existing behaviors, or new behaviors might be added using scripts which might be interpreted, or even compiled at runtime. Editors emerge that allow users to directly manipulate the objects that constitute their "programs".

This story might have a familiar ring to those readers who have followed the research done over the years into reflection and metalevel architectures. Of course, the reflection literature has earned it's recondite reputation the hard way (that is, through unrepentant abstruseness). Our tale might be seen as an attempt to render their Finnigan's Wake as, if not a Mother Goose Tale, at least a trip Through the Looking Glass.

The patterns in this paper are part of a larger pattern language that we are writing. We currently envision a language that will include the following patterns.

The patterns included in this OOPSLA '98 version of this work are shown in bold:

The patterns in this collection can be broken down into the following categories:

1. DATA

2. METADATA

Patterns that arise from pushing decisions out onto the user:

3. PARAMETERIZATION

4. CONFIGURATION

5. EXPRESSIONS

6. SCRIPTS

7. DIALOGS

8. TABLES

Patterns that arise as a domain specific languages emerges:

9. PROPERTY

10. SMART VARIABLES

11. SCHEMA / DESCRIPTOR

12. ACTIVE OBJECT-MODEL

13. SPECS

14. MESSAGE ROUTING

15. CONTEXT

16. NAMESPACES

17. EDITOR

18. VISUAL BUILDER

19. DYNAMIC VALIDATION

20. HISTORY

21. VALUE HOLDER / SMART VALUES

Patterns that become relevant as data become "self aware" (or more reflective)

22. METACLASS

23. IDEMPOTENCE

24. SYNTHETIC CODE

25. CODE AS DATA

26. CAUSAL CONNECTION

27. BOOSTRAPPING

Global Forces

A variety of forces impinge upon evolving systems. Some of them pervade the patterns below, and are enumerated here to avoid duplication:

Portability: When an artifact works with a variety of applications, on a variety of platforms, it is more likely to be reused.

Efficiency: Highly dynamic systems can be inimical to efficiency. However, efficiency is often a false idol. For instance, the cost of referencing an object in a remote database may be several orders of magnitude more expensive than accessing a local object, and such overhead may overwhelm secondary concerns, such as the cost of accessors vs. direct variable references.

Complexity: Complex data structures and code are hard to debug and comprehend. Alas, many programmers are better at creating complexity than simplicity.

Dynamism: Interactive programming environments, visual builders and debuggers, and distributed applications all benefit from a more dynamic approach to software system architecture.

Dynamism can be dangerous, though. More dynamic systems can be harder to debug, maintain, and understand. One wouldn't let a child learn to ride a bicycle on a busy highway.

Resources: Dynamic strategies can be costly in terms of space, processing time, secondary storage, etc.

Safety: Dynamic strategies allow users to circumvent and undermine compile-time safeguards.

Flexibility: A program should be versatile, and usable in a variety of contexts. This, in turn enhances:

Reusability: A versatile, flexible application, or, for that matter, a code-level artifact, should be as reusable as possible. The reuse of such code avoids duplicated effort, eases the learning and comprehension burden of new programmers, and makes maintenance easier, since multiple, redundant copies of essentially the same code need not be maintained.

Adaptability: It is essential that an artifact be flexible enough so as to confront and address changing requirements. We distinguish several "shades" of adaptability.

Maintainability: It is important that an artifact be maintainable enough to as to confront and address changing requirements. Code that can't be worked on will lapse into stagnation.

Tailorability: One size does not fit all. Often, an artifact will not fit the needs of a particular user "off the rack", but can be tailored to do so when certain "alterations" can be made.

Customizability: Just an artifact can be tailored to a particular user or users, it can be customized to adapt it better for a particular task. This may seem at first to be a lot like tailorability, but we find that distinguishing between forces for change than emanate from individual users and those that arise from taking on different tasks useful.

Pushing Complexity into the Data: When complexity is pushed into the data, it can be coped with dynamically, at runtime. Configuration information can travel with the data, rather than being locked up in explicit code.

Pushing Configuration Decisions out onto the User: As a framework evolves, more and more configuration decisions are pushed out onto the user. Users become programmers of sorts. The trick, of course, is not to force them to be general purpose programmers. They don’t have the training for this, and would fear that their social lives would be ruined. And, real programmers would be out of jobs.

Autonomy/Mobility: Once behavior and data, together with their descriptions, are liberated from application code, they can travel independently of these applications, and be used in a wider range of programs, on a wider range of platforms.

Comprehensibility: Metadata helps to document its associated data. Indeed, data files with metadata in them were often referred to as “self-documenting” data files during the ‘70s. Of course, the opposite can be true as well.

PROPERTY

also known as

ATTRIBUTES

ANNOTATIONS

DYNAMIC ATTRIBUTES

DYNAMIC VARIABLES

VARIABLE STATE

DYNAMIC SLOTS

PROPERTY LIST

How do you allow individual objects to augment their state at runtime?
Image a system in which objects that track the assembly of products in a manufacturing shop are themselves routed through this system. The original designs for these objects might have focused on concerns such as part numbers and inventory information. New requirements might dictate that certain objects have a manufacturing routing slip attached to them as they move through the system. The original system made no provisions for such attachments. Once way to address this problem might be to add a new field for these routing slip attachments. However, there are several problems associated with this approach. One is that only a handful of instances will ever need such attachments, while the overhead cost for this field will be paid by every product object in the system. Another is that there may be a variety of these attachments. For instance, some products might have timestamp annotations made as they pass certain stations. We could add fields for all such annotations, but the costs and complexity would escalate rapidly. What we really want is a way to add a new variable to any object on-the-fly.

Therefore, provide runtime mechanisms for accessing, altering, adding, and removing properties or attributes at runtime.
An implementation of the PROPERTY pattern will involve the following participants:

Indicators

These are the key or name values with which properties will be looked up. The name is taken from the original Lisp 1.5 implementation of property lists.

Descriptors

Objects that describe the attributes of a property. They may include display names, type information, the indicator objects, constraints, default values, and references to accessor functions.

List

Properties are usually stored in a random access data structure, such as a Linked List, Dictionary or Hashtable.

Owner

This dictionary is owned by the object that possesses the properties. Usually each instance of an object has its own property dictionary. However, an external data structure that maps instances or instance/indicator pairs might also be used.

Client

Clients, when transparent implementations of the PROPERTY pattern are used, can be unaware they are using PROPERTIES. More often, properties will be referenced using a different syntax than for normal variables. Also, clients must take particular care to cope with the consequences of a property's absence, since, most objects won't be carrying them.

Value

In dynamically typed languages, an object of any type will usually be permitted as the value of a property. Where type checking is present, downcasting from types like Object is usually used. Some implementations use String values as property values.

The following minimal set of operations on properties will usually be supplied in some form by object that have properties. These operations are generic, but are presented here using a Java-like syntax:

void addProperty(Indicator name,

Descriptor descriptor, Object value);

void removeProperty(Indicator name);

boolean hasProperty(Indicator name);

void setProperty(Indicator name, Object value);

Object getProperty(Indicator name);

The hasProperty() will either be explictly or implicitly present. When it is not explictly present, a distinguished value such as Property.ABSENT might be returned by getProperty() and setProperty() to indicate the absence of a property, or an Exception might be generated.

Some implementations don't provide an explicit addProperty() operation, and allow the first call to setProperty() to create a new property instead. This is often the case when property Attributes are not present.

Similarly, the removeProperty() operation can be dispensed with by providing for removal of a property when a designated value is assigned to it, such as Property.REMOVE. This value, naturally, must be one that need never be the value of a Property.

One or more of the following additional operations might be present in some form as well:

Descriptor getDescriptor(Indicator name);

Descriptor[] getDescriptors();

Object[] propertyList();

The role, if any of the Descriptor objects, will vary depending upon the language and implementation strategy used. In dynamically typed languages such as CLOS, Smalltalk, or Self, they may not be present at all. In languages such as C++, Java, and C, minimal type information is might be used to indicate how different property value should be downcast. It is also used by tools such as editors, visual builders and debuggers.

Sometimes it is difficult to trace a pattern back to its origin. This is not the case with PROPERTIES. We can be quite definite as to where this idea first arose. Properties first appeared in MIT's early Lisp systems, and were described in the landmark Lisp 1.5 Programmers Manual [McCarthy et al. 1962].

Every atomic symbol in Lisp 1.5 had a property list. The first time a symbol was encountered, a property list was created for it. In Lisp 1.5, property lists began with a special sentinel value (-1). The rest of the list contained the properties themselves, as indicator/value pairs. These indicators, or property names, were themselves atoms. Some of the indicators used by Lisp 1.5 were:

PNAME
The print name of the atomic symbol for I/O

EXPR
An S-expression defining a function whose name is the atomic symbol on whose property list the atom appears

SUBR
Function defined by a machine language subroutine

APVAL
Permanent value for the atomic symbol considered as a value

Lisp 1.5 used these functions to reference property lists:

define[x]

Define one or more functions using the EXPR properties

deflist[x;ind]
Define one or more entries for property ind

attrib[x;e]

Add a property pair e to list x

prop[x;y;u]

Search x for y, and return the rest of the list, or u if not found

get[x;y]

Search x for y, and return the value

remprop[x;ind]
Remove a property ind from x

The pattern-hood of PROPERTIES was first suggested by Beck [Beck 1997] in his collection of Smalltalk Best Practice Patterns. He referred to this pattern as Variable State. In Smalltalk, one can implement a simple property facility by adding a Dictionary or IdentityDictionary to an object's class, or one of its superclasses, and add methods like the ones below to allow the properties to be created and referenced. The keys for these Dictionaries will usually be Symbols, and values may be any Object whatsoever.

propertyAt: aSymbol

propertyAt: aSymbol put: anObject

A more ambitious implementation of this pattern was presented in [Foote 1988]. It used a number of Smalltalk's reflective facilities to allow properties to be referenced using the same external accessor syntax as was used for normal variables. This AccessibleObject facility added a new pair of classes, AccessibleObject and AccessibleDictionary, to allow dictionary-like access to objects, and object-like access to dictionaries.

Accessible objects allow dictionary-style access to all their instance variables, along with record-style access to a built in dictionary. Hence, instance variables can be accessed using at: and at:put:, as well as the standard record-style access protocol (name and name:).

Both access styles are provided without any need to explicitly define additional accessing methods. The record-style access method is rather slow however, and should be overridden when efficiency is an important consideration.

If name: or at:put: storage attempt is made and no instance variable with the given name exists, an entry is made for the given selector in the AccessibleObject's item dictionary. Thereafter, this soft instance variable may be accessed using either access method. In this way, uniform access to hard and soft fields is provided. AccessibleObjects provide a way of adding associations to objects in a manner similar to that provided by Lisp's property list mechanisms. Any instance of any subclass of AccessibleObject, which inherits from Object, may add such dynamic fields, and iterate over all its fields, including its regular instance variables.

The example below shows some of the capabilities of AccessibleObjects:

AccessibleObject class methods for: examples

example

"AccessibleObject example"

| temp |

temp AccessibleObject new.

temp dog: 'Fido'.

temp cat: 'Tabby'.

Transcript print: temp dog; cr.

Transcript print: temp items; cr.

temp keysDo: [:key | Transcript print: key; cr].

Transcript print: (temp variableAt: #items); cr.

Transcript endEntry

[Doble & Auer 1997] presented an implementation of a property-like facility that supports the accessor syntax for properties in a similar fashion that they called Extensible Attributes. They used a variation of PROPERTIES to build up scaffolding in the development environment. This scaffolding allowed them to dynamically add and remove variables as they learned what the classes needed and then they were able to GENERATE ACCESSORS which converted these dynamic attributes to normal accessors once the layout of the objects had been decided.

In C++, a Standard Template Library map might be used to implement the key/value pair mappings between indicators and values that are necessary to implement properties.

In Java, the java.util package provides a Property class that provides String indicator to String value mappings. Java uses it to provide access to system properties. Users can use it for any purpose they please. One noteworthy feature of Java's implementation is that each property object uses two hashtables: a main hashtable, from which the property object inherits, and a hashtable of default values, which it owns. The property accessors are designed to refer requests for keys that are not found in the main dictionary to the default dictionary. This is a simple use of the CHAIN OF RESPONSIBILITY pattern. All new properties are added to the main hashtable, so tables of defaults are never modified by property references, and hence can be shared.

This sample program illustrates the Property class in action:

import java.util.*;

public class PropertyTest

{

 public static void main(String args[])

 {

 //Get the system properties, and print them to stdout...

 Properties props = System.getProperties();

 props.list(System.out);

 //Create an default property list, and add a couple of keys...

 Properties defaults = new Properties();

 defaults.put("one", "one");

 defaults.put("two", "two");

 //Create a property list with our defaults…

 Properties test = new Properties(defaults);

 test.put("three","I'm a three");

 test.put("one","Override the one");

 //List dumps 'em all, and save just dumps the main list...

 test.list(System.out);

 test.save(System.out,"--Property Test--");

 //Let's remove one...

 test.remove("four");

 //Enumerate the names, and print each.

 //Unlike keys, propertyNames takes defaults into account...

 for (Enumeration e = test.propertyNames();

 e.hasMoreElements();)

 {

 String name = (String) e.nextElement();

 System.out.println("Key: " + name);

 System.out.println("Get: " + test.get(name));

 System.out.println("Prop: " + test.getProperty(name));

 }

 }

}

The first Lisp implementation of the PROPERTY pattern used linked lists (naturally) of indicator/value associations.

Most contemporary implementations use dictionaries or hashtables. An interesting variation on the hashtable approach was used in Objectiva [Anderson 1998]. It used the Descriptor objects themselves as Indicator look up keys.

When properties are extremely rare, the overhead of providing an additional field to store a List object can be avoided by storing a mapping between instances and their property lists elsewhere. This approach trades the additional runtime overhead of a second dictionary lookup for space, and, if the property accessors are implemented elsewhere, the need for a new subclass.

The use of the PROPERTY pattern can have a number of desirable consequences:

You avoid a proliferation of subclasses

Since fields may be added as needed on a per-instance basis, there is no need for a plethora of simple subclasses to add these fields. Where an arbitrary mix of such fields might be possible, creating and maintaining a mix of such subclasses may range from merely cumbersome to combinatorially impractical.

Fields may be added to individual instances

Since property lists are per-instance resources, each instance behaves like a lightweight, dynamic subclass as far as state is concerned.

Fields may be added and removed at runtime

There is no need to anticipate all the possible fields in advance. What's more, a field that is no longer need can be expunged.

You may iterate across the fields

Since properties are stored in random access data structures like dictionaries and hashtables, you may iterate over them using ENUMERATORS.

Metainformation is available to facilitate editing and debugging

Because properties use symbolic indicators that can be manipulated at runtime, property editors are easy to build.

Properties and their descriptors can serve a useful locus for validation, constraints, serialization, and editing.

Properties, in conjunction with SCHEMA objects and SMART VARIABLES, can allow programmers to build validators, constraint satisfiers, serializers, and editors to suit their needs. You can build variables your way. Nested namespaces, defaults, triggers, events, listeners, you-name-it ... you can build it.

Properties can graduate to first-class fields as an application evolves.

They are a finishing school for fields. If you find that most or all instances of a class add a particular property, promoting it to field status can be contemplated. Of course, you may still want to employ a DESCRIPTOR or SCHEMA to expose it at runtime.

Of course, PROPERTIES are not an unqualified plus. The following negative consequences may be encountered. Consult a metaphysician before using this pattern.

Syntax is more cumbersome in the absence of reflective support

Access to properties will normally use a different, more verbose syntax than normal variable references do.

Property access code is more complex that that for real fields

Property code must cope properly with indicators, dictionaries, and descriptors. Clients cannot depend on a fixed set of properties, and must test, or otherwise be prepared to deal with absent properties. The need to code for the possibility of absent properties can clutter your code as well. Where default mechanisms are not available, default selection must be coded by clients explicitly.

Reflective mechanisms, where they are available, can be slower

Mechanisms such as Smalltalk's doesNotUnderstand: mechanism, which can be used to trap unimplemented accessor messages and convert them into property references, are an order of magnitude or more slower than standard instance variable references.

Idiomatic implementations, when reflective support is not available, are also slow

Dictionaries and hash tables require hashing calculations and probes, which are slower than direct field references in most object-oriented languages.

Access to heterogeneous collections can be expensive

Property lists share the same disadvantages seen with other heterogeneous collections in typed languages such as C++ and Java. There is overhead associated with downcasting.

A field must be added to all objects, while only a few ever use it

There is the danger that many will be asked to pay a one field tax in storage overhead while few objects actually play the property game. Furthermore, inheriting from a property-enabled subclass can complicate the design of class hierarchy, particularly in systems without multiple inheritance. If this is an important consideration, an external map can be used to avoid this problem.

A tangle of properties is no substitute for an orderly factoring.

Properties are useful during the early stages of an applications evolution. There may be a temptation to use properties (as well as dynamic methods) as the basis for unrestricted prototype-style programming, of the sort seen in Self and ObjectLisp. A gaggle of properties that recur in recognizable clusters may be a good candidate for full object-hood. You should refactor such code to take advantage of such opportunities.

Properties are effective tools for exploring the design space early in a design's evolution. They are also an effective way of coping with the occasional need for lightweight, per-instance annotations. They should be used sparingly, though. They are no substitute for a well-factored design.

The following are but a handful of the known systems that use properties.

One such systems is the Caterpillar Financial Modeling Framework (http://www-cat.ncsa.uiuc.edu/~yoder/financial_framework/).

Three others were discussed at the 1998 UIUC Metadata Workshop (http://www-cat.ncsa.uiuc.edu/~yoder/Research/metadata/UoI98MetadataWkshop.html).

These were:

1. Hartford Insurance Framework by Jeff Oakes

2. Objectiva Telephone Billing System by Francis Anderson

3. Argo Belgium School System by Michel Tilman

Not only does the notion of PROPERTY have a long history, but it casts a wide shadow. The name "property" has been used to describe three distinct intents. Each of these is described herein as a separate pattern. These intents, and the corresponding patterns are:

PROPERTY
You want to add and remove attributes on a per-instance basis at runtime

SMART VARIABLE
You want to augment the behavior of variable references and assignment, to implement constraints, listeners, etc.

SCHEMA
You want a map of your variables so that you can enumerate them, manipulate them en masse, and reference them indirectly, using symbolic names

Properties can be used in conjunction with the CHAIN OF RESPONSIBILITY to build prototypes and namespaces.

PROPERTIES can, and often do, use METADATA.

Beck's VARIABLE STATE pattern is a variant of the PROPERTY pattern.

Doble and Auer's EXTENDED ATTRIBUTES pattern is another variant of the PROPERTY pattern. It emphasizes the dynamic creation of attributes during development. These are stripped away before the final version of an application is deployed.

PROPERTY LIST has also been nominated for pattern-hood in [Riehle 1997], [Sommerlad 1997] and in early drafts of [Sommerlad & Rüedi 1998].

SMART VARIABLES

also known as

ACTIVE VARIABLES

SLOTS

Now I have to display my true schizophrenia. Having convinced you in Direct Variable Access that just using variables is good enough, I'm going to ask you to ignore that crazy bastard and listen to me talk some sense here.

Kent Beck, in rebuttal to Kent Beck

Indirect Variable Access
Smalltalk Best Practice Patterns, p. 91

The VisualWorks Smalltalk GUI associates editable attributes with most of the widgets it displays on the screen. Whenever one of these values changes, you want the displayed value to reflect that change. One way to do this is to place an object called a ValueHolder in the application variable that would usually house the value being displayed. This object is accessed using a special value/value: accessing protocol. It houses the value, and also contains code to notify the GUI when a change is made.

If you ignore the additional protocol, these value holders are really playing the role of "smart variables", that not only house values, but perform additional chores when these values are referenced or changed.

How do you allow programmers to control the effects of references to their variables?
Objects are abstractions that bundle together a clump of state and a collection of functions or behaviors that operate on this state. The upkeep of this state information is one an object's fundamental duties. As such, references to this state information, and assignment to these variables, are critical "choke points" in any object. Indeed, without its state memory, an object's behavioral repertoire is nothing more than a collection of stand alone-functions. Because state is such an important part of what an object is about, variable references and assignments frequently attract additional responsibilities.

As object's evolve, the semantic burden placed on elements of its representation can grow. An assignment to a variable indicating an employee's age may require not only that this value be preserved in memory, but that it be stored safely away in a database, and that it appear as part of a form in a runtime display of employee data.

A variety of chores will naturally be tied to changes in state, or dependent on notification that a variable has been referenced. For this reason, if you can go to a single place in your program to control what happens whenever such references or assignments are made, your job is simplified.

Therefore, provide a means for intercepting references to variables.
Among the ancillary duties that might be tied to state activity are:

Dependent Notification: Programmers frequently want to ensure that notifications to dependents are made when an object's state is modified. Indeed, this is the essence of the OBSERVER [Gamma et al. 1995] pattern.

Persistence: You might what to keep track of assignments to an object's state to keep a persistent representation of it up-to-date.

Distribution: You likewise might want ensure that a change to an object propagates changes in its state to remote copies.

Caching: A remote copy of an object might cache current copies of its representation, to avoid the overhead of referencing a master version every time a value is requested of it.

Constraint Satisfaction: Assignments will often call code to test compliance with constraints, which may veto or modify the assignment.

Synchronization: Since an object's state is itself a resource that must be protected from synchronization problems, such constraints are often best handled using critical sections tied to variable references.

Despite the importance of variable reference and assignment, very few languages provide the necessary reflective mechanisms to allow programs to intercept variable access.

The most powerful facilities for gaining control over variables are found in the Lisp World. For instance, InterLisp provided hooks to allow code to be run when variables were read and written. The Common Lisp Object System's Metaobject Protocol [Kiczales et al. 1991] treats an object's instance and class variables as instances of SLOT-DESCRIPTION metaobjects. The metaobject protocol is designed so that all references to an instance's slots, or variables, are made through accessor methods defined in object's metaclass and in that object's slot descriptions. As a result, classes may elect to use variables that adhere to rules they define themselves. In particular, they can override their accessors to incorporate whatever additional behavior they may deem fit.

Smalltalk represents class, pool, and global variables as Association or VariableBinding objects. As such, references in compiled byte code retrieve values by sending a value message to these objects at runtime. Kent Beck has noted that the clever programmer can substitute other objects that conform to this protocol to wrap whatever behavior he or she wishes around such references. [Beck 1993]

Smalltalk does not normally provide a means to intercept instance variable references. However, here to, the ubiquitous Beck's fingerprints can be found. [Messick & Beck 1985] describes a scheme that exploited the Smalltalk Compiler to introduce what they called Active Variables. These variables were declared much like normal instance variables, but permitted the introduction of daemon methods that were run when they were accessed.

Alas, such facilities are rare. The vast majority of programmers who want to intercept variable references are deprived of such language support. Instead, they must resort to idiomatic approaches to implement the SMART VARIABLE pattern's intent.

The dominant idiom for implementing SMART VARIABLES is to employ ACCESSOR METHODS, or GETTERS and SETTERS.

If all references to your variables, including public references, private references, and everything in between, go through such accessor functions, then this idiom will effectively realize the pattern's intent. Achieving such accessor hygiene can require a degree of effort that can range from trivial to tedious, depending on the language, programming tools, and objects involved.

For instance, in CLOS [Bobrow et al. 1988], every slot reference is made through an accessor function, and achieving this intent is simple. In Smalltalk, only an object's own methods, and those of its subclasses, can reference its instance variables. Hence, enforcing discipline on external references via methods is a necessity in Smalltalk. Of course, any method may change any variable, so some internal discipline is required. If all references, even internal ones, go through accessor methods, the single point of reference/change requirement of our idiom can be maintained. However, since Smalltalk does not distinguish private and public methods (except by convention) these accessors effectively make the state that they protect visible to the entire world.

C++ [Stroustrop 1991] and Java [Chan et al. 1998] allow both instance variables, and their accessors to be declared as public, protected, or private. (Java and C++ both have per-file "package" scope peculiarities as well). Indeed, Java beans "properties" depend on accessor functions to tie bean editors and beans together at runtime.

It may seem to the reader that accessors are idiom enough for most SMART VARIABLE tasks. Do we really need separate objects? Is it not enough to code the additional chores that must be performed when a variable is read or written in the accessor methods for it?

Up to a point, this is so. In simple cases, hand coding smart accessors will suffice. However, at what point does managing these accessors become tedious. Were one to want to change a few dozen variables wholesale to hook them into a metering or diagnostic regimen, would one prefer to do this by hand, or en masse, via a change to a single, per-class definition? This is where separate variable objects can help.

SMART VARIABLES can work together with SCHEMA / DESCRIPTOR objects to allow the code that coordinates references, assignments, and the activities that depend on them to be reused. These objects can have their own hierarchies. Indeed, a family of such stock variable classes might evolve to meet a range of SMART VARIABLE requirements.

SMART VARIABLES are frequently asked to handle OBSERVER notifications.

You may want to add SMART VARIABLES to attributes that have been added through PROPERTIES.

METADATA can be used to help implement SMART VARIABLES.

Wrappers to the Rescue [Brant et al. 1998] discusses how accessors methods themselves might be wrapped to allow additional behavior to be associated with them.

QUERY OBJECTS [Brant and Yoder 1996] use SMART VARIABLES to make sure query dependencies are properly propagated.

The Palette System [Golin 19xx] uses CLOS :before and :after methods to generate automatic notifications upon variable reads and writes .

SCHEMA

also known as
DESCRIPTOR
MAP

DATABASE SCHEME

LAYOUT

Information tied to the layout of particular objects or data structures is all too often buried in source code, where it is difficult to comprehend and change. As a result, adding new functionality, such as a graphical editor, for such objects can require painstaking, object specific, thankless work. This can be particularly galling when the coding task that needs to be done varies only in the specific details of how these objects are laid out. If only this information were itself data, general routines to exploit these maps could allow many chores to be coded once and for all.

How do you avoid hard-wiring the layouts of structures into your code?

How do you describe the layout of a structure, object, or database row?
A number of forces encourage the emergence of layout metadata.

Once is the inexorable evolution of a system's objects themselves. The sort of code that will use layout information, such as GUI code, is precisely the sort of code that tends to be tightly coupled to layout decisions otherwise. By reading layout information from a map, a single version of the code performs layout specific chores for all the objects that use it. Problems with this code should become evident quickly, since flaws will affect all the applications that use it.

By contrast, writing handcrafted code for each object is an error prone endeavor.

Hand-written code has some advantages. It is usually relatively efficient, and can be straightforward as well. Code to read metadata can be slow and complex.

Therefore, make a schema or map describing your data structures available at runtime.
The following participants come can come into play:

Schema

The schema itself is logically a set of descriptors. In the simplest cases, it can be implemented as a set, array, hashtable, or collection of Descriptors. However, in some systems, this role will be played by more elaborate or general data structures. For instance, in languages that support first-class Class objects at runtime, these objects will play the role of Schemas along with fulfilling their other duties. A class, together with its superclasses, may be looked upon as a compound schema that use the CHAIN OF RESPONSIBILITY pattern to serve up descriptors.

Descriptor

These objects describe the layout of each element of a schema. Often, they will provide additional attributes, such as display names, constraint hooks, type information, default values, access flags, etc. However, in the simplest cases, the Descriptor may only supply the element's symbolic name.

Subject

The Subjects are the objects being mapped by a SCHEMA. In class-based object -oriented languages, all the instances of a class will have the same layout, and hence can use the same map. In prototype-based languages that support dynamic slots, schema may be more complex, per-instance entities that map a single instance, or a handful of single instances.

Grapples

A schema must have a way to map from symbolic references to actual objects. These references are not direct. Instead, they are used to construct "grapples" that let the actual Subject be manipulated indirectly. In C or C++, these might be indices or offsets that provide the grist for a brief foray into unsafe pointer arithmetic. In Smalltalk, these might be blocks, or selectors that can be sent as messages using perform:. They might even be CompiledMethods. In Java, Method and Field objects might play this role

Attributes

Often, designers seem to design descriptors as if they were thinking "as long as I'm reinventing variables, I'll add a few things I've always wanted while I'm at it." Descriptor attributes may include type information, size information, constraints, access information, presentation information, support for debuggers and editors, and the like.

Client

Code that employs schema objects to indirectly manipulate the objects they describe is usually complicated, since the resources to make such calls must be assembled at the call sites.

Database systems usually allow programmers to retrieve database schema meta-information at runtime. This information can be used to build editors, forms, and accessors to map objects to databases.

Class-based object oriented languages usually roll the responsibility for exposing layout information at runtime into their Class objects. In Smalltalk and Java, Classes can be asked to supply information about their variables. In Smalltalk, these are be simple lists of names. In CLOS, they are SLOT-DESCRIPTION metaobjects. This layout information has been used over the years to support a variety of features, such as distributed marshalling, and persistence [Paepcke 1989].
In Java, the java.beans package supports a family of Descriptor objects that work in conjunction with the Beans Introspector and editors to allow components to be assembled dynamically.

Beans supplies FeatureDescriptors, PropertyDescriptors, IndexedPropertyDescriptors, BeanDescriptors, EventSetDescriptors, MethodDescriptors, and ParameterDescriptors.

Beans is interesting because its Descriptors contain additional functionality to help support SMART VARIABLES. For instance, a PropertyDescriptor permits constraints, display name, short descriptions, and custom editors, as well as hidden and expert flags, to be supplied for each Subject.

When Descriptors are not supplied explicitly by programmers, Beans uses introspection to construct default Descriptors. The Introspector, in turn, uses the Field and Method descriptors that are found in Java's Class objects.

Object brokers, such as CORBA, and Microsoft's COM, provide API's that supply runtime schema information.

METADATA is often used to describe SCHEMAS.

The use of a SCHEMA greatly simplifies the implementation of the SERIALIZER [Riehle et al. 1998] pattern..

SCHEMAS can be used in conjunction with SPECS, and a present in some form in many GUI systems.

ACTIVE OBJECT-MODEL

also known as
DYNAMIC OBJECT-MODEL

RUNTIME INTERPRETER

LIVE OBJECT-MODEL

DYNAMIC PROGRAM

DYNAMIC BUSINESS RULES

PROGRAM TREE

Inside every domain-specific framework, there is a language crying to get out.

Thomas Jay Peckish II

An ACTIVE OBJECT-MODELS is an object model that provides “meta” information about itself so that it can be changed at runtime. ACTIVE OBJECT-MODELS usually arise as domain-specific frameworks evolve to address an ever widening range of domain-specific needs. Ultimately these models can become general enough to span several domains (for example, think of a graphing framework that originated in one domain but then was enhanced so that it could be used by any application needing graphs).

Being dynamic and configurable allows tools to be developed to allow decision makers and administrators to introduce new products and changes to their business models at runtime. This can reduce time-to-market of new ideas from months to days, if not hours. It can place the power to customize the system in the hands of those who have the business knowledge to do it effectively.

How do you let your users build programs without “programming”? How do you let your users customize and change the behavior of what they do at run-time?
Some issues that arise are:

· Both systems and their users must adapt quickly to changing requirements .

· Building Dynamic Objects is hard.

· Once built, Dynamic Objects allow for rapid alterations to your program.

· You can "program" without programming.

· Changing a program to meet new business requirements is usually slow and complicated.

· Users want the ability to change what they do on-the-fly.

· ACTIVE OBJECT-MODELS can be difficult to develop, hard to understand, and hard to maintain.

Therefore, develop an ACTIVE OBJECT-MODELS that can define the objects, their states, the events, and the conditions under which the objects changes state. Also include editors and other tools to assist with developing and manipulating the object model.
A system with an ACTIVE OBJECT-MODELS has an explicit object model that it interprets at run-time. If you change the object model, the system changes its behavior. For example, a lot of workflow systems have an ACTIVE OBJECT-MODELS . These objects have states and respond to events by changing state. The ACTIVE OBJECT-MODELS defines the objects, their states, the events, and the conditions under which an object changes state. Suitably privileged people can change this object model "without programming". Or are they programming after all? Business rules can be stored in an ACTIVE OBJECT-MODELS . This makes it easy to change the way a company models its business.

Building a new software product typically requires dedicated software development and support. This can take time. When a simple modification to a business rules requires the mobilization of a platoon of programmers, and a sustained campaign of weeks or months to make, it is easy to not bother at all. For example, in the insurance business, rules for the manner in which rates are calculated change quite frequently. It might take several months before a new application could be deployed and released to agents in the field. In fact, by the time you released the application, new rates might be in effect. Maintenance costs escalate, while agents are faced with a situation where the system is never quite up-to-date.

ACTIVE OBJECT-MODELS are certainly harder to build than a conventional systems. They usually evolve out of frameworks. [Roberts & Johnson 1998] gives a simple overview of the process by which frameworks evolve.. If your system is only going to change a couple of times over its lifetime, then the effort entailed in constructing a framework may not be worth the cost and bother. However, when business rules change frequently, there is a decided advantage to be gained from letting changes to the system be released rapidly, and an Active Object-Model may right for you.

Power never comes without a price. When you confer the power to program on users, you give them the power to make mistakes. Just as certainly as ants follow picnics, where programs go, bugs shall surely follow. It is for this reason that the construction of ACTIVE-OBJECT MODELS should not be undertaken without a solid infrastructure of editing, programming, and support tools.

However, you don't want to simply expose a full-featured programming languages to your hapless users. Most users will rightfully consider programming as beyond their pay-grade. Instead, the key to design ACTIVE OBJECT-MODELS is to expose only those aspects of the problem domain that users need to change. The concepts these objects models expose should make sense in terms of business notions users will understand. The consequences of manipulating these objects should be in accord with the expectations that a user familiar with the business, but unfamiliar with programming, might have. This is one reason why such power should be exposed only as business requirements demand it.

How do you build ACTIVE OBJECT-MODELS ? Well, you use parameterization. Metadata is read from databases and objects are generated from schema descriptions at runtime. The ACTIVE OBJECT-MODEL pattern sits at the apex of a hierarchy of supporting patterns. Indeed, most of the patterns described in this paper support the emergence of ACTIVE object-models.

Examples include the Objectiva Telephone Billing Framework, the Hartford UDP Framework, the Argo System, and the Caterpillar Financial Modeling Tool.

An ACTIVE OBJECT-MODEL emerges as a bevy of lower-level patterns are applied in support of it.

Dynamic manipulations of the model's state vocabulary can be made using PROPERTIES. Behavior can be manipulated using the TYPE OBJECT, STRATEGY, STATE, and DECORATOR patterns. A range of creational patterns may come into play to assemble an ACTIVE OBJECT-MODEL. TEMPLATE METHODS, FACTORIES, BUILDERS, and PROTOTYPES may all be brought into play.

ACTIVE OBJECT-MODELS will often begin as COMPOSITES, and employ one or both of the INTERPRETER and VISITOR patterns.

Programmers may call upon a VISUAL BUILDER to construct their ACTIVE OBJECT-MODELS. Since the data that constitute an ACTIVE OBJECT-MODEL are, in effect, its program too, these must be saved and restored in an orderly fashion.

The SERIALIZER [Riehle et al. 1998] pattern, and in particular its variants that employ METADATA, can be of use here.

IDEMPOTENCE

also known as
REFLECTIVE TOWER

INFINITE REGRESS

PLAYING YOURSELF

"So, the naturalists observe, the flea,

Hath smaller fleas that on him prey;

And these have smaller still to bite 'em;

And so proceed, ad infinitum"

-- Jonathan Swift

Defining things in terms of them selves can lead to circularities, some of which are quite vicious
When you are defining things in terms of other things, what do you use to, in turn, define those things? You can keep things simpler by using the same things. However, you are then left with the question of how to define those things.

Therefore, define a representation that describes the representation that is the same as the representation. Let this representation be like an actor who "plays himself".
There are three related, but distinct, way to resolve regress:

1) Idempotence, or a self-definitional circle

2) Induction, or an inductive/base case separation

3) Lazy reification, or a scheme that introduces a new "level" whenever a new one needs to be referenced.

SYNTHETIC CODE

also known as
PROGRAMS WRITING PROGRAMS

PROGRAM GENERATED CODE

MACRO PROCESSING

PRE-PROCESSOR

What can we do to create complex behavior on-the-fly?
Often, users will want to specify complex new behaviors that are beyond what can be specified using traditional properties or tables.

Therefore, have a program generate the code, based upon some description, and compile or interpret it.
A simple example of synthesized code is code that automatically generates accesssor or delegator functions in Smalltalk or Java. Java reserves a special "synthesized" attribute in it's virtual machine description to identify code that was generated by programming systems or environments, rather than by primates.

Macro systems write code based on their arguments and on expansion rules given by their (human) authors. Some macro systems make heavy use of metadata. Macros may or may not be expanded at run-time.

The Wheel Loader Information System, build by Caterpillar is one example of a system

that uses synthetic code

Of course, synthesized code is not limited to accessors or macros. Indeed, when a program writes programs, their complexity is limited only by the capabilities in which the programs are being written, it's runtime environment, and the knowledge available to the program writing the program.

CODE AS DATA

also known as
DATA AS CODE

VON NEUMANN ARCHITECTURE

Reflection during the Eisenhower Era

Hence, [the machine] can, in particular, change the orders (since these are in memory!)--the very orders that control its actions.

--John Von Neumann 1958

Programs can only operate on data that they can address.
Why might a program need to change its code or add new code on-the-fly?. One reason is to augment it with new functions and behaviors. It may not be enough to simply represent user generated code as an interpretable text string, or as a list structure. Some applications may require that such runtime representations be translated into more efficient forms.

Therefore, represent programs as data that programs can manipulate, and put them where programs can get at them.
Assembly language programmers have long know the joys of writing self-modifying code, though the practice is frowned upon in polite circles. High-level programming languages such as Lisp and Scheme represent code using list structures that are accessible and changeable by programmers (though some systems place limitations on this practice so as to allow more efficient implementations.)

Today's memory management hardware and operating systems often place code in read-only segments. Code caches complicate code modification schemes. These days, programmers must often resort to indirection into data segments, or operating system contortions to modify code segments.

In the classic reflection literature [Smith], variables and code reside together in a space called the "structural field". A running program can manipulate any elements of the structural field. The structural field can contain not only data pertaining to the program's subject matter, but the data pertaining to the running program itself, including the program itself, as well as representations of the running program's execution state.

CAUSAL CONNECTION

also known as
EFFECTIVE CONNECTION

How do ensure changes to a representation affect the objects they represent?
Causal connection is actually a rather unusual property for a computer-based representation to have. Normally, deleting an employee record in a corporate database will not result in that employee immediately ceasing to exist. (Starvation takes weeks, and even despair seldom sets in instantly.)

Therefore, provide a mechanism that ensures that changes made to the representation are immediately reflected in those objects they represent.
The essence of causal connection is that a change made to a representation must immediately affect the thing it represents. That is to say, if A represents B, and I blow up A, I expect B to disappear, and vice versa [Kiczales 1991].

However, in a world where bits increasingly dictate reality, changing the salary field in an employee record may indeed be the effective determinant of an employee's compensation. Hence, the appeal for teenagers in breaking into a school computer to change their grades. The electronic copy may, in fact, be the authoritative, or definitive copy.

Conclusion

In biology, there used to be a now-discredited notion that ontogeny recapitulates phylogeny. The idea was that a developing embryo progresses through developmental stages that mirror evolutionary history. For instance, immature embryos develop, and then discard, gill-like features, and limbs emerge as flipper-like appendages that mature into arms and legs.

At times, it seems that the evolution of individual applications is driven by a microcosm of the same forces that have driven the evolution of programming languages. As systems mature, they demand more and more of the power of the tools that were used to build them. As a result, features seen in compilers and program development systems seem to migrate into applications themselves.

That this should be so is not surprising. Programmers will create worlds in the image of the ones in which they live. As they do so, they restore, one feature at a time, a wealth of metainformation that the programming environments used to build these systems once themselves gathered, and then discarded. For instance, serialization is easier to construct in a generic manner if you have maps of how your objects are laid out. Chances are that your programming system had just the information you needed, and threw it away as your program was compiled and linked. Hence, your debuggers and GUIs lose the benefit of this knowledge, and application programmers have to conspire to reconstitute it instead. Would it not be better to reuse these objects, and the tools that built them, at runtime, rather than reinventing them? Indeed, these hardworking, mature metadata objects are beginning to emerge from their anonymity and play these broader roles.

Ralph Johnson has observed that programmers today find themselves in a position reminiscent of the one that telephone operators were in the '30s. Then, it was calculated, that if telephones were to become universally available, the number of operators required would rapidly exceed the population of the United States. Everyone would have to become an operator. Of course, this is, in effect, exactly what happened. Telephone users find their own phone numbers, and complete the calls themselves. This, in turn is possible, because labor intensive plug-board operation and by-hand directory assistance has been replaced by direct dialing. The user interface has improved to the point where anyone is exposed only to those aspects of the task that are germane to their purpose. Hence, anyone can operate the telephone network, and most everybody does.

The same phenomenon can be seen today in the software arena. Computer-phobes and Luddites who shunned technology during the '70s now lead hostile takeovers armed with easy-to-use spreadsheets. They call what they do "number crunching". Is it really programming? Does it matter anymore?

Acknowledgments

We are grateful to our PLoP '98 shepherd, Neil Harrison, as well as our PLoP '98 program committee overseer Jens Coldewey, and PLoP '98 program chair Steve Berczuk, for their faith, forbearance, and consul during this paper's somewhat protracted gestation. Its inadequacies, such as they are, are solely the responsibility of its authors.

We also owe a debt to the participants at the May Metadata Workshop at the University of Illinois, whose work, ideas, and insights have helped us to frame our own notions about these issues.

Discussions with Ralph Johnson, Dragos Manolescu, and Dirk Riehle helped shape our thinking about these issues, and their pattern-hood.

References

[Alexander 1979]

Christopher Alexander

The Timeless Way of Building

Oxford University Press, Oxford, UK, 1979

[Alexander et. al 1977]

C Alexander, S. Ishikawa, and M. Silverstein

A Pattern Language

Oxford University Press, Oxford, UK, 1977

[Auer & Doble 1997]

Ken Auer & James Doble

Expedient Smalltalk Programming

Smalltalk Scaffolding Patterns

Proceedings of PLoP '97

Monticello, IL, October 1997

[Beck 1997]

Kent Beck

Smalltalk Best Practice Patterns

Prentice Hall, Upper Saddle River, NJ, 1997

[Bobrow et. al. 1988]

D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,

S. E. Keene, G. Kiczales, and D. A. Moon

Common Lisp Object System Specification

X3J13 Document 88-002R

SIGPLAN Notices, Volume 23,

Special Issue, September 1988

[Bobrow & Kiczales 1988]

Daniel G. Bobrow and Gregor Kiczales

The Common Lisp Object System

Metaobject Kernel -- A Status Report

Proceedings of the 1988 Conference on Lisp

and Functional Programming

[Borning 1986]

Alan Borning

Classes versus Prototypes in

Object-Oriented Languages

Proceedings of the ACM/IEEE

Fall Joint Computer Conference

Dallas, TX, November 1986, pages 36-40

[Brant et al. 1998]

John Brant, Brian Foote, Ralph E. Johnson,

and Donald Roberts

Wrappers to the Rescue (4/1/98 FINAL)

Proceedings of the 12th European Conferences on

 Object-Oriented Programming (ECOOP '98)

Brussels, Belgium, 20-24 July 1998

To appear as part of the

Springer-Verlag Lecture Notes in Computer Science

 series

[Chan et al. 1998]

Patrick Chan and Rosanna Lee

The Java Class Libraries

Second Edition, Volume 2

java.applet, java.awt, java.beans

The Java Series

Addision Wesley Longman, 1998

ISBN 0-201-31003-`

[Chan et al. 1998]

Patrick Chan, Rosanna Lee, and Douglas Kramer

The Java Class Libraries

Second Edition, Volume 1

java.io, java.lang, java.math, java.net,

java.text, java.util

The Java Series

Addision Wesley Longman, 1998

ISBN 0-201-31002-3

[Drescher 1985]

G. L. Dresher

The ObjectLISP USER Manual (preliminary)

Cambridge: LMI Corporation

[Ducassse et al. 1995]

S. Ducasse, M. Blay-Fornarino, A. M. Pinna-Dery

A Reflective Model for First Class Dependencies

OOPSLA '95, Austin Texas

SIGPLAN Notices, Volume 30, Number 10

pp. 265-

October, 1995

[Foote 1988a]

Brian Foote

Designing to Facilitate Change

with Object-Oriented Frameworks

Masters Thesis, 1988

Dept. of Computer Science

University of Illinois at Urbana-Champaign
[Foote & Johnson 1989]

Brian Foote and Ralph E. Johnson

Reflective Facilities in Smalltalk-80

OOPSLA '89, New Orleans, LA

October 1-6 1989, pages 327-335

[Foote & Yoder 1995]

Brian Foote and Joseph Yoder

Architecture, Evolution, and Metamorphosis

Second Conference on Pattern

Languages of Programs (PLoP '95)

Monticello, Illinois, September 1995

Pattern Languages of Program Design 2

edited by John Vlissides, James O. Coplein,

and Norman L. Kerth.

Addison-Wesley, 1996

[Gamma et. al 1995]

Eric Gamma, Richard Helm, Ralph Johnson,

and John Vlissides

Design Patterns:

Elements of Reusable Object-Oriented Software

Addison-Wesley, Reading, MA, 1995

[Gamma 1998]

Erich Gamma

Extension Object

Pattern Languages of Program Design 3

edited by Frank Buschmann,

Dirk Riehle, and Robert Martin

Addison Wesley Longman, 1998

[Goldberg & Robson 1983]

Adele Goldberg and David Robson

Smalltalk-80:

The Language and its Implementation

Addison-Wesley, Reading, MA, 1983

[Gosling et. al. 1996]

James Gosling, Bill Joy, and Guy Steele

The Java(Language Specification

Addison-Wesley, Reading, MA, 1996

[Johnson & Foote 1988]

Ralph E. Johnson and Brian Foote

Designing Reusable Classes

Journal of Object-Oriented Programming

Volume 1, Number 2, June/July 1988

pp. 22-35

[Kiczales, et al. 1991]

Gregor Kiczales, Jim des Rivieres,

and Daniel G. Bobrow

The Art of the Metaobject Protocol

MIT Press, 1991

[Maes 1987a]

Pattie Maes

Computational Reflection

Artificial Intelligence Laboratory

Vrije Universiteit Brussel

Technical Report 87-2

[Maes 1987b]

Pattie Maes

Concepts and Experiments in

Computational Reflection

OOPSLA '87 Proceedings

Orlando, FL, October 4-8 1977 pages 147-155

[McCarthy et al. 1962]

John McCarthy, Paul W. Abrahams,

Daniel J. Edwards, Timothy P. Hart,

and Michael I. Levin

Lisp 1.5 Programmer's Manual, 2nd Edition

MIT Press, 1965, ISBN 0-262-12011-4

[McCarthy 1978]

John McCarthy

History of Lisp

ACM SIGPLAN History of Programming

Languages Conference

Los Angeles, CA June 1-3 1978

pages 217-223

[Messick & Beck 1985]

Steven L. Messick and Kent L. Beck

Active Variables in Smalltalk-80

Technical Report CR-85-09

Computer Research Lab, Tektronix, Inc., 1985

[Paepcke 1990]

Andreas Paepcke

PCLOS: Stress Testing CLOS

OOPSLA/ECOOP '90 Proceedings

Ottawa, Ontario, Canada

[Riele et al. 1998]

Dirk Riehle, Wolf Siberski,

Dirk Baeumer, Daniel Megert,

and Heinz Zuellighoven

Serializer

Pattern Languages of Program Design 3

edited by Frank Buschmann,

Dirk Riehle, and Robert Martin

Addison Wesley Longman, 1998

[Roberts & Johnson 1998]

Don Roberts and Ralph E. Johnson

Evolve Frameworks into Domain-Specific

Languages

Pattern Languages of Program Design 3

edited by Frank Buschmann,

Dirk Riehle, and Robert Martin

Addison Wesley Longman, 1998

[Smith 1982]

Brian Cantwell Smith

Reflection and Semantics in a

Procedural Programming Language

Ph. D. Thesis, MIT

MIT/LCS/TR-272

[Smith 1984]

Brian Cantwell Smith

Reflection and Semantics in Lisp

Proceedings of the 1984 ACM

Principles of Programming Languages

Conference

pages 23-35

[Smith & des Rivieres 1984]

Brian Cantwell Smith and Jim des Rivieres

Interim 3-LISP Reference Manual

Xerox Intelligent Systems Laboratory ISL-1

Xerox Palo Alto Research Center

June 1984

[Steele 1984]

Guy L. Steele Jr.

Common Lisp: The Language

Digital Press, 1984

[Steele 1990]

Guy L. Steele Jr.

Common Lisp: The Language

Second Edition

Digital Press, 1990

[Stein et. al. 1988]

Lynn Andrea Stein, Henry Lieberman,

and David Ungar

A Shared View of Sharing: The Treaty of Orlando

Object-Oriented Concepts, Databases, and

Applications

edited by Won Kim and Frederick H. Lochovsky

ACM Press, New York, New York, 1989

[Stroustrup 1991]

Bjarne Stroustrup

The C++ Programming Language

Second Edition

Addison-Wesley, Reading, MA, 1991

[Ungar & Smith 1987]

David Ungar and Randall B. Smith

Self: The Power of Simplicity

OOPSLA '87 Proceedings

Orlando, FL, October 4-8 1977, pages 227-242

[Watanabe & Yonezawa 1988]

Takuo Watanabe and Akinori Yonezawa

Reflection in an Object-Oriented Concurrent

Language

OOPSLA '88 Proceedings

San Diego, CA, September 25-30, 1988

pages 306-315

[Yonezawa 1989]

Akinori Yonezawa, editor

ABCL: An Object-Oriented

Concurrent System

MIT Press, Cambridge, MA

1989

� EMBED Word.Picture.8 ���

Base Level

Method invocation

1

2

Meta Level

2

4

3

 Meta-Object

Method CALL

{ ...

 ...

 ... }

CALL{...}

Abstract Machine

Object A

Method m

{ ...

 CALL ...

 ... }

B

A

C

Base Level

Reflection

Reification

M3

M1

Meta Level

M2

M4

� EMBED Word.Picture.8 ���

 t1

deposit(amount) [amount>-balance]

 setBalance(balance+amount-1)

 t4

withdrawal(amount)

 [amount(balance]

 setBalance(balance-amount)

debit

credit

withdrawal(amount) [amount>balance]

 setBalance(balance-amount)

 t2

 deposit(amount)

 [amount(-balance]

 setBalance(balance+amount-1)

 t3

deposit(amount) [true]

setBalance(balance+amount)

 t5

State Machine

BankAccount

balance: Real

deposit (n:Real)

withdrawal (n:Real)

Class Diagram

Figure 2: Graphic specification of Bank system

� EMBED CDraw5 ���

� Theory enthusiasts would call it “Turing complete”.

1
27

_963839928.unknown

_964944044.doc

name = “John Smith”�phone = “408-555-1212”

a Person

street = “123 Main St.”�city = “Lalaland”�state = “CA”�zip = “12345”

an Address

address

_954091037.doc

Class Area

References Area

Instance Area

System References

