First-Class Views:

A Key to User-Centered Computing and Slimmer Tiers

Arnon Rosenthal

The MITRE Corporation

arnie@mitre.org�
Edward Sciore

Boston College and MITRE

sciore@bc.edu�
�

abstract

Large database systems (e.g., federations, warehouses) are multi-tier, comprising several virtual or physical databases, each derived from other tiers. Our goal is to make such databases more user-centered, i.e., to allow users (including administrators) to work mostly within their native view. We claim that this is possible if the database system can support first-class views. We illustrate how such capabilities would make such databases substantially more usable, flexible and maintainable. We also suggest that enterprise object architectures built using first-class views can have thinner, cheaper, more flexible tiers. Because this approach uses views to describe interrelationships among tiers, database technology can have a larger role in such architectures, beyond providing persistent storage at the bottom-tier manager. We then outline our proposal for supporting first-class views, which involves using propagation rules to componentize view semantics. Finally, we present some research problems that arise.

1.	Introduction

Views have enormous versatility, practicality, and importance [Rous98], but also several serious shortcomings. For example: Views are restricted to read access except under special circumstances, with limited support for updates and change monitoring; metadata defined on base tables (such as data quality, origin, and creation info) does not propagate up to views, and cannot be read or modified; error messages from the system are presented to view users in terms of base tables; and schema changes (e.g., adding and deleting columns to view tables) are not allowed. Furthermore, there is no external mechanism for extending standard operations to wider classes of views (e.g., to define view update on views that include outerjoin or multiplication by a constant), or for defining new generalized operations (e.g., change_notification).

In large, distributed, multi-tier systems (such as data warehouses and federated database systems), these limitations cause significant problems for both administrators and end-users. Administrators at a view tier are forced to perform their work in terms of tables belonging to other tiers. These tiers may have large structural and vocabulary differences between them, making this ìschema-shiftingî between tiers difficult and cumbersome. End-users at a view tier, in order to get the desired interaction with their data, must go through applications that interface with the source tiers. The code for these applications manage the semantics of update operations, error handling, metadata propagation, etc. Tiers can become ìfatî with all of this code, which is costly to build and maintain.

Our goal is a database system (or perhaps middleware) that provides tools and services to support tiers as first-class views. Data administrators would define the static semantics of a view tier (using SQL statements), as well as its dynamic semantics (discussed in Section 3); the system would then automatically generate the code needed to connect the tier to its sources. Tiers thereby become slimmer and more maintainable, and more user-centered. That is, users at each tier might know that their database is one of many, but have the illusion that all the databases use schemas that are consistent with the userís own . To the greatest extent possible, users would feel like they own and are manipulating their own data.

The semantic difficulties of translation through views are well known, and we expect no silver bullet. Researchers have made only limited progress toward sound, complete, unambiguous treatments for operations on views (e.g., for updates [Keller86] and data replication [Mumick96]). Moreover, they did not address how one could extend their facility to allow additional operations within the view query (e.g., attribute arithmetic, outerjoin).

So instead of seeking general, complete solutions, we reframe the problem as ìProvide automated assistance to the humans who solve the special cases.î We would consider the automated assistance successful if we could:

Handle the easy cases automatically. Since many attributes in views are pulled with little or no change from a base table, many kinds of work can be reflected rather trivially.

Disambiguate by point-and-click decisions, not by coding. Tools already do this for updating a (vendor-determined) set of views. It should be provided for many other sorts of work.

For difficult expressions, assist the easy parts. One then needs a clean way to plug handcrafted pieces into the system-generated portion.

The purpose of this paper is to give the reader a feeling for the tremendous potential of first-class views, to outline an approach to their implementation, and show the numerous areas in which research is needed.

2. benefits of first-class views

A system that supports first-class views would translate and propagate information expressed against one tier into a form suitable for another tier. Example kinds of propagated information are metadata (e.g., integrity information, access privileges), events (e.g., error messages), and operations (e.g., establish change notification, negotiate corrections). Such a system would allow significantly better interaction between tiers. For example, the data administrator at a view tier would be able to: see the integrity constraints for each view table, automatically translated from the constraints at the source; request that the source administrator modify its integrity constraints so that a view tableís constraints are more appropriate; and in general, negotiate an agreement with the source about what constraints are enforced at each tier. A user at a view tier would be able to verify the correctness or quality of her data, because its properties would be propagated to the view tier; the user could also report suspicious values to the source, because the report would be translated down in terms of the source schema.

First-class views can simplify small databases, by moving administrative tasks to natural, stable conceptual views, away from changing, storage-oriented tables. The savings are probably greatest, though, for the emerging multi-tier enterprise object architectures, in which objects at each tier tend to implement their methods in terms of methods of lower-tier objects. In such a world, databases today are relegated to the role of back-end stores at the lowest tier.

Yet, these multi-tier object-oriented applications face problems similar to the multi-tier database systems described in Section 1. The programmer must think in terms of two schemas ñ her own tier and the supporting one. Method code is often ìfatî, because it must also do generic data management tasks like change propagation. The resulting code entwines business tasks and mapping tasks.

The right role for database technology, then, is to provide data management services for objects at all tiers. The first step is to build the tiers of objects by first defining their data as first-class views of a multi-tier database. Methods that provide and translate all the generic data management work can then be built and maintained by the system. Business methods will be cleaner, and tiers slimmer. An analogous approach is reported in [Goyal96]. They ìthinnedî the code tiers in Model/View /Controller graphic applications by describing relationships declaratively (in logic) and then automating generation of change-notification code.

3. implementing first-class views

The definition of a view in SQL specifies only a portion of its semantics. Additional information must be specified to disambiguate view updates [Keller86], and even more information is needed to specify the semantics of metadata propagation, operations, etc. [Ros98]. In each of these cases, the additional information specifies how data (or metadata, events, or operations) is to be transformed from one schema to another.

A system that supports first-class views requires three things:

A means for specifying the additional semantics of a view;

An ability to use this specification to translate the data when needed;

A facility for administering specifications, establishing standard vocabulary, etc.

In [Ros98] we propose a framework for such a system. This section briefly describes our approach.

We specify the dynamic semantics of a view by specifying the behavior of each property (or meta-attribute), operation, and event. This behavior is broken into atomic components called propagation rules. Each rule specifies a function to be computed, for a single property (or event or operation), across a single relational operator (such as Join, Select, or Total.). The rule also describes its own scope of applicability, and strength for overriding other rules and for automated operation. For example, consider the property AbsoluteErrorBound, which denotes the maximum amount by which a value can be incorrect. Then one candidate propagation rule is that when a value is computed from two inputs, the resultís property is the sum of the input property values.

The behavior of a property is determined by executing the propagation rule for each node in an operator tree for the viewís defining query. The value of the property in the view can be computed as the composition of the functions associated with each nodeís propagation rule.

The specification of all needed propagation rules for a view seems daunting. Fortunately, extensive reuse of rules is possible. For many operators, most properties are propagated using a small number of rules (e.g., for Multiply, either propagate the property unchanged, or to multiply it). The administrator (even a nonprogrammer) can choose among these applicable rules through a GUI. Moreover, in many situations there is a natural default rule, which can be chosen automatically by the system without any user intervention.

It is impossible for a system to provide rules for all conceivable properties. Thus, the system must be componentizable, i.e., it should allow simple, independent steps to extend the operators, properties, and rules. A vendor of a propagation system can provide an initial set of useful rules. But as needs expand, both vendors and their customers need to be able to extend and customize the rule base. Our use of propagation rules satisfies this requirement.

The system should provide tools for performing its various tasks. These include creating and modifying rules, specifying their scope and their strength (i.e., can they apply automatically, do they override other rules), and selecting one of the candidate rules. Vendors, professional administrators, and power users need many of the same capabilities, so the tools should be part of the delivered system. Organizations could contribute domain-specific types and rules, and database administrators would be able to add database-specific rules and override existing ones. Simple tasks might be left to run-time users (e.g., confirming defaults and choosing among candidates).

4. research issues

The development of a facility for first-class views is a large, multi-faceted problem, with significant opportunities for the database community.

The preeminent problem is to create a framework and the supporting tools. Algorithms must be developed to translate information between tiers, as specified by propagation rules. Strategies for immediate, bulk propagation (for when a data warehouse is loaded) and lazy evaluation (for integration with user operations) should be considered. It must also be decided how the translated result should actually be forwarded to other tiers.

Tools are needed for rule administration as well as rule selection. Issues include how to present choices to administrators, how to handle situations where only part of the information is propagated, and semantic and efficiency issues in resolving multiply-applicable rules (with error handling in cases of too many or too few choices). Tools are also needed to support negotiations between administrators at different tiers.

Next, candidate propagation rules need to be identified for each query operator and each kind of property, event, or operation. Some cases are trivial (e.g., propagate unchanged). Many others require applying existing research results (e.g., for determining if a view can be computed from a set of other views, or for tracing a granule back to its relevant inputs). The number of problems is large enough to occupy legions of graduate students, dealing with different query operators (e.g., different flavors of join and aggregation) and different types of properties, operations, and events. The framework makes it easy for results to be componentized and put into practice.

The propagation discussed in this paper handles schema heterogeneity ó given differing schemas at a view and source tier, it exploits the view mapping to decide how to propagate additional information between the tiers. The goal is to allow each user to think that all database schemas match the userís. (The illusion will be imperfect; for some operations, a user must know that other databases have additional tables and attributes, or omit some that the user sees.)

A propagation/translation facility should be able to act as a module in a system that also offers solutions to other problems. One such problem is context heterogeneity; that is, the problem of an attribute that has a different representation in two tiers. For example, the attribute Salary might have different currencies in different tiers. Techniques have been developed to handle context heterogeneity [Sciore94], which may be extendible to schema heterogeneity.

One virtually untouched area concerns the management of constraints in a multi-tier database. Each administrator is responsible for a set of tables. When a constraint predicate or error message is mapped between tiers, how can we maximize the amount that is understandable within an administratorís sphere of responsibility? What is a good way to present the residue?

Similarly, research on managing multi-tier security policies is wide open. Given a certain set of access rights on the source tier, can we determine whether a user has access to the view data? If not, can the system determine a reasonable set of rights on the source that could be added? Security administrators routinely make determinations like ìthe individual values are sensitive, but the total is notî, or vice versa. How can policies such as this be propagated to other tiers? Would security policies be different if access rights could be assigned to individual attributes, instead of the entire tables required by SQL?

We have assumed that SQL was used as the view definition language. It will eventually be necessary to expand beyond SQL as the view definition language to include constructs like object-oriented-like operations and relation variables [Miller98].

Finally, there is the pragmatic question of how can better metadata support be inserted into products. Our premise is that metadata is useful and important, and thus propagating it between tiers is worthwhile. However, current systems actually capture and exploit only a small fraction of the potential metadata. This is a chicken-and-egg situation: users donít require administrators to capture metadata, because their systems donít support it, and systems donít propagate and exploit metadata because there is no perceived supply. We hope that as systems support first-class views, the cost of supporting metadata will go down, which will make it worthwhile to collect. The emergence of XML as a standard markup language and RDF as a resource description framework should also encourage metadata collection. Once critical mass occurs, the possible uses of this metadata and the required system support are waiting to be conceived.

5. Summary

Views are one of the jewels in relational theory, and have wide applicability. This paper has argued that first-class views would substantially increase this applicability; for example, it could be possible for the database community to influence the methodology and implementation of large software systems, not just persistent storage subsystems.

Our community has debated ìexpanding the boxî versus ìgetting out of the boxî. Both alternatives aim at expanding the applicability of DBMS engines. We propose an additional direction ñ to provide good support for interconnected sets of boxes.

We see an analogy with circuit design: At one time, the area of active elements (nodes) was the driving concern; now it is the area of connections. We expect something similar to occur with software systems. The costs associated with building and maintaining the connections, and disseminating work across them, may eventually exceed the costs of the components. The slimmer tiers provided by first-class views has the potential to simplify the management of the inter-tier connections.

6. References

[Keller86] A. Keller, ìThe Role of Semantics in Translating View Updatesî. IEEE Computer (19:1), January 1986, pp. 63-74.

[Goyal96] N. Goyal, C. Hoch, R. Krishnamurthy, B. Meckler, M. Suckow, ìIs GUI Programming a Database Research Problem?î. ACM SIGMOD Conference, June 1996.

[Miller98] R. Miller, ìUsing Schematically Heterogeneous Structuresî. Proc. ACM SIGMOD Conference, June 1998, pp. 189-200.

[Mumick96] Views ë96 Workshop on Data Materialization, Montreal, June 1996. I. Mumick (ed.) ,

[Ros98] A. Rosenthal and E. Sciore, ìPropagating Integrity Information among Interrelated Databases. IFIP 11.6 Workshop on Data Integrity and Control, Warrenton VA., 1998.

[Rous98] N. Roussopoulos, ìMaterialized Views and Data Warehousesî. SIGMOD Record, March 1998, pp. 21-26.

[Sciore94] E. Sciore, M. Siegel, and A. Rosenthal, ìUsing Semantic Values to Facilitate Interoperability Among Heterogeneous Information Systemsî. ACM Transactions on Database Systems (19:2), June 1994, pp. 254-290.

� PAGE �1�	� DATE \l �8/25/98� � TIME �10:54 AM�

