A Formalization of Dynamic Object Models

Claudia Pons* Gabriel Baum* Miguel Felder**

*Lifia-Universidad de La Plata

[cpons,gbaum]@sol.info.unlp.edu.ar
**Universidad de Buenos Aires

Pragma Consultores SRL

felder@dc.uba.ar

http://www-lifia.info.unlp.edu.ar/
Abstract

In this paper, we define an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models: formality, usability and flexibility.

The proposed conceptual model integrates both of the levels in the architecture of modeling notations (i.e. model and metamodel levels) into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels. This integration is particularly useful for the description of evolution of system specification (e.g. evolution of business rules). For example, it is possible to formally specify how a modification made to a model impacts on the modeled system.

1. Introduction

1.1 Background and motivation

Object oriented software development must be based on theoretical foundations including a conceptual model for the information acquired during analysis and design activities. Conceptual models must fulfill the following three requirements:

1- conceptual models must be formal. The more complete, consistent, and formal the conceptual model is, the more precise and unambiguous engineers can be in their description of analysis and design information. Formal verification of this information is very important because errors at this stage have a high and costly impact on the subsequent stages of the software development process.

2- conceptual models must be usable. The use of formal approaches in large-scale industrial systems development is still quite uncommon. The reasons for this fact are mainly due to the complexity of their mathematical formalisms that are difficult to understand and to communicate to the customer. As a consequence, it has been proposed to combine the advantages of intuitive graphical modeling notations on the one hand and mathematically precise formalisms on the other hand, in development tools. The basic idea for this combination is to use mathematical notation in a transparent way, hiding it as much as possible under the hood of graphical notations. This approach has advantages over a purely graphical specification development as well as over a purely mathematical development because it introduces precision of specification into a software development practice while still ensuring acceptance and usability by current developers.

3- conceptual models must be flexible. The dynamic nature of contemporary business requirements forces developers to make their application more flexible and adaptable. Business rules change dynamically, so it is necessary to provide a flexible representation of them. In the last few years the concept of Dynamic Object Model has emerged. A system with a dynamic object model has an explicit object model that it interprets at run-time. If you change the object model, then the system changes its behavior, allowing a company to evolve the way it does its business.

1.2 Contributions of this work

In this paper, we define an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models:

1. Formality: the proposed conceptual model has a formally defined syntax and semantics. It is based on order-sorted dynamic logic with equality, following the ideas presented in [Wieringa et al.94, Wieringa and Broersen 98]. We use dynamic logic as the formal kernel language due to its simplicity, high expressive power and appropriateness for representation of behavioral and structural concepts of object-oriented systems.

2. Usability: the formalism is hidden under graphical notation. We address the problem of gaining acceptance for the use of an unfamiliar formalism by implementing an automatic transformation method, which defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in Unified Modeling Language (UML) [Rational 97a,b].

3. Flexibility: the conceptual model uses explicit representation of data and metadata, allowing software engineers to describe evolution of system specification (e.g. evolution of business rules).

2. A two levels conceptual model

Visual modeling languages are graphic languages for specifying, visualizing, constructing and documenting the artifacts of software systems prior their construction or renovation. Generally, the conceptual framework for modeling notations [Rational 97b] is based on an architecture with two levels:

1. metamodel level. A metamodel is a model for the information that can be expressed during software modeling. Basically, a metamodel defines the semantics for representing object models. It consists of entities defining the model language such as Class_diagrams, State_machines, Sequence_diagrams and so on.

2. [image: image1.wmf]model level. On the other hand, a model is an instance of a metamodel. It describes the objects inherent to the application domain: for instance: BankAccount, Client etc.

Figure 1: Levels of Specification in an Object Oriented System

Figure 1 illustrates the relationship between the two separate levels of specification. SpecUML is the UML metamodel (i.e. a description of the UML language), its semantics is the set of all the well-formed UML models. It contains constraints over model entities, such as ‘class names are unique’. On the other hand, SpecSYS is a description of the objects in a particular system. It expresses constraints over objects, such as ‘withdrawals decrement the balance’. This separation of concepts leads to the following problem: if both specifications are separate (or expressed in different formalisms), it is not possible to express relationships between entities belonging to different levels (for example, it is not possible to specify how a modification made to the model impacts on the modeled system).

In this section we present a formal model for representing the information acquired during analysis and design processes. This formal model integrates both of the levels in the architecture of the conceptual framework for modeling notations into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels.

The formal model consists of the information proceeding from:

1. (UML,UML)
formal specification of the metamodel.

2. (SYS, SYS)
basic specification of the model.

3. (MMM, INST (COMP)
instantiation and completion axioms.

The metamodel specification and the basic part of the model specification are both written once for all, the instantiation axioms and the completion of the model specification are both obtained by the application of an automatic transformation method that creates them from a UML model.

In section 2.1 we describe the formalization (UML,UML) of the metamodel. In section 2.2 we sketch the formal specification (SYS, SYS) of the model level. Finally in section 2.3 we describe the logical model integrating both levels.

2.1 Metamodel level

2.1.1 Elements in the metamodel level

In the UML, class diagrams model the structural aspects of the system. Classes and relationships between them, such as generalizations, aggregations and associations constitute class diagrams. On the other hand, the dynamic part of the system is modeled by sequence and collaboration diagrams that describe the behavior of a group of instances in terms of message sendings, and by state machines that show the intra-object dynamics in terms of state transitions.

It is important to formally define how the different UML diagrams are related to one another, to be able to maintain the consistency of the model. Moreover, it is important to specify the effect of modifications of these diagrams, showing what is the impact on other diagrams, if a modification is made to one diagram.

2.1.2 Evolution in the metamodel level

Object-oriented system specifications evolve over their life cycle of for a variety of reasons. One of the most common forms of evolution involves structural changes such as the extension of an existing specification by addition of new classes of objects or the addition of attributes to the original classes of objects. At the other extreme, evolution at this level might reflect not only structural changes but also behavioral changes of the specified objects. Behavioral changes are reflected for example in the modification of sequence diagrams or state machines.

Formal representation of the metamodel level

In this section we give a formal specification of the metamodel level using a formal language based on Dynamic Logic (DL). This specification consists of a signature (UML= ((SUML, (), FUML, PUML) and a formula UML over (UML. The elements of the initial algebra denoted by the specification are model elements, such as classes, relationships, state machines, etc. The transition relations between possible worlds represent modifications on the specification of the system, for example adding a new class, modifying an existing class, etc.

The formula UML is the conjunction of two disjoint sets of formulas, S and D of static and dynamic formulas respectively. The former consists of first-order formulas which have to be valid in every state the system goes through (they are invariants or static properties). These rules are used to perform schema analysis and to report possible schema design errors. The latter consists of modal formulas defining the semantics of actions (i.e. model evolution).

The formal specification of the metamodel has been written once for all, but it might be enriched by defining new properties that developers want to verify over models, or it might be modified to reflect modifications on the metamodel definition (e.g. addition of new elements to the modeling language).

For space limitations only a brief part of the specification will be shown (for a more detailed presentation, see [Pons 98]).

Specification of Classifier

Sorts
Classifier

Taxonomy
Classifier(GeneralizableElement

Updatable functions

attributes: Classifier(Seq of Attribute.

operations: Classifier (Seq of Operation

Actions

addAttribute: Classifier x Attribute (Act

addOperation: Classifier x Operation (Act

deleteAttribute: Classifier x Attribute (Act

deleteOperation: Classifier x Operation (Act

Axioms
(c:Classifier (a1,a2:Attribute

Static axioms

‘no attributes may have the same name within a classifier’

(a1(attributes(c) (a2(attributes(c)

 (name(a1) = name(a2)) (a1 =a2

Dynamic axioms

(addAttribute(c,a)(true (a(attributes(c)

[addAttribute(c,a)] a(attributes(c)

(deleteAttribute(c,a)(true (a(attributes(c)

[deleteAttribute(c,a)] a(attributes(c)

End specification of Classiffier

Specification of StateMachine

Sorts
StateMachine

Taxonomy
StateMachine(ModelElement

Updatable functions

context: StateMachine(ModelElement

states:
 StateMachine(Set of State

transitions: StateMachine(Set of Transition

Actions

addState: StateMachine x State(Act

addTransition: StateMachine x Transition(Act

deleteState: StateMachine x State(Act

deleteTransition: StateMachine x Transition(Act

Axioms
(h:StateMachine, (t:Transition

Static axioms

t(transitions(h) (source(t)(states(h) (target(t)(states(h)
‘compatibility between views: only features of its context class

can be used within a state machine’

t(transitions(h)(trigger(t)(operations(context(h))

Dynamic axioms

(addTransition(h,t)(true (t(transitions(h)

[addTransition(h,t)] t(transitions(h)

(addState(h,s)(true (s(states(h)

[addState(h,s)] s(states(h)

End specification of StateMachine

2.2 Model Level

2.2.1 Elements in the model level

The elements in the model level are basically instances (data value and objects) and messages. At the model level a system is viewed as a set of objects collaborating concurrently. Objects communicate each other through messages that are stored in semi-public places called mailboxes. Each object has a mailbox where other objects can leave messages. There exist privacy requirements to make sure that for all object o, only o receives messages destined to o.

Object and DataValue

An object is an instance that originates from a classit is structured and behaves according to its class. All objects originating from the same class are structured in the same way, although each of them has its own set of attribute links. Each attribute link references an instance, usually a data value. The class (i.e., the set of features that the object conforms to) may vary over time. At run time an object is defined by,

· its identity;

· Its classifier;

· The values of its attributes and associations (i.e. its internal state);

· Its private mailbox containing the messages that it has received and not processed yet.

Another kind of instance is data value, which is an instance with no identity that cannot change its state
Messages

The reception of a message causes the invocation of an operation on the receiver. The receiver executes the method that is found in the class that corresponds to the operation. The reception of a message by an instance may cause a transition and subsequent effects as specified by the state machine for the classifier of the recipient.

A message is a triple composed by

· The name of the message (which is the name of the operation invoked by the message)

· The identity of the destination object

· The actual arguments for the parameters of the invoked operation
2.2.2 Evolution in the Model level

· At this level, the system may evolve for the execution of three kinds of actions:

· call action: a call action is an action in which a message is created that causes an operation to be invoked on the receiver. The execution of an operation may cause modifications on the internal state of the receiver, as well as the explicit sending of messages to other objects.

· create action: a create action is an action resulting in the creation of an instance of some classifiers.

· destroy action: a destroy action is an action in which an instance causes another instance to cease to exist.
2.2.3 Formalization of the model level

In this section we give a formal specification of the elements in the model level. This specification consists of a signature (SYS= ((SSYS,() FSYS, PSYS) and a formula SYS over (SYS. The elements of the initial algebra denoted by the specification are system elements, such as objects and messages. The transition relations between possible worlds represent system evolution.

At this level, the system may evolve for the execution of three kinds of actions:call actions, create actions and destroy actions. The Action symbol . (dot) denotes call actions. The formula [(obj_term.message_term)] Pred_term means that immediately after the object denoted by obj_term receives and executes the message denoted by message_term, the Pred term is true. A reception of a message states that the object is prepared to react to the receipt of the message. The formula specifies the expected behavioral response. The action formulas representing the state transitions corresponding to the reception and execution of a message m by an object o, are:

1- Privacy conditions:

m(mailBox(o) (receiver(m)=o ‘only o receives messages destinated to o’.

(o.m(true (m=first(mailBox(o)) ‘only messages contained in the mailBox are proccessed. The proccessing order is FIFO’.

2- No Dangling behavior:

m(mailBox(o) (specificaton(m)(operations(classifier(o)) ‘Objects do not receive messages that they do not understand’.

3- Receipt of message:

[o.m] mailBox(o) = mailBox(o) – firt(mailBox(o)) ‘after being processed, massages are removed from the mailBox’.

4-Guards and Effects:

(o.m(true (isLocal(o,m) (
 (s:StateMachine(context(s)=classifier(o) (
(t:Transition(t(transitions(s) (trigger(t)=specification(m)

(source(t)=currentState(o) ([o.m]currentState(o)=target(t)

(eval(guard(t)[self/o, parameters(guard(t))/arguments(m)])=true

((n:Message(n(effect(t) ([o.m]n(mailBox(receiver(n))))

‘A message sending might represent a local invocation or a call action. A local invocation is a special kink of message that invokes a local operation (e.g. modifications on the internal state of the receiver). This type of invocation takes place without the mediation of a state machine). On the other hand Call actions are represented through transitions in a state machine. To execute a message, the receiver must be in an appropriate state and the guard associated with the message (where formal parameters have been replaced with actual arguments) must evaluate to true. The execution of a message m implies two kinds of changes in the state of the system:

 - changes in the internal state of the receiver of m;

- changes in the mailboxes of any object in the system (these changes are produced when a set of messages is emitted during the execution of m)’.

5- Fairness conditions:

(m:Message (o:Object (m(mailBox(o) (((o.m(true)
‘Every message that was sent will be received and processed’

For space limitations only a brief part of the specification will be shown (for a more detailed presentation, see [Pons 98]).

Specification of Instance

Sorts
Instance

Taxonomy
Instance(ModelElement

Updatable functions

slots:
 Instance (Set of AttributeLink

linkEnds: Instance (Set of LinkEnd

classifier: Instance (Classifier

value: Instance x Name (Instance

Axioms
(i:Instance

Static axioms

‘the AttributeLinks matches the declarations in the Classifier’

(l:AttributeLink(l(slots(i) (attribute(l)(allAttributes(classifier(i)))

value(i,n)=value(l), where l(slots(o) (name(attribute(l))=n

End specification of Instance

Specification of Object

Sorts
Object

Taxonomy
Object (Instance

Nonupdatabel functions

first: (Object

succ:Object (Object

Updatable functions

mailBox: Object (Seq of Message

Actions

-.-: Object, Message (Act

Axioms
(o:Object, (m:Message

Static axioms

m(mailBox(o) (receiver(m)=o

m(mailBox(o) (specificaton(m)(operations(classifier(o))

Dynamic axioms

m(mailBox(o) (specificaton(m)(operations(classifier(o))

(o.m(true (m=first(mailBox(o))

...........................

End specification of Object

2.3 Integration of both levels: MMM logic

To express the integration of the model level with the metamodel level we impose a few restrictions on signatures, and thus on the general language. The resulting language is called Model&MetaModel Language (MMM Language).

A model&metamodel signature MMM=((S, (), F, P) is a Dynamic Logic signature with the following special features:

· It includes the signature UML.

· It includes the signature SYS.

· There is an updatable predicate symbol, Exists:Object.The predicate Exists defines the set of existing objects in each state.

· There is an updatable function symbol currentState:Object(Name indicating the current state of objects.

· There is an updatable predicate symbol, Enabled:Act. This predicate indicates which Actions are allowed to happen in each state.

An integrated specification of an object-oriented system is a pair (MMM,MMM), where MMM = UML(SYS(JOINT. Firstly, UML is the formula defining the metamodel semantics. Secondly, SYS is a formula describing the semantics of objects and messages. Thirdly, JOINT is the formula describing the particular aspects of the system that is being specified.

It is important to emphasize that the formulaJOINT is constructed over the extended MMM language and thus it can express at the same time model properties (e.g. behavioral properties of objects), metamodel properties (e.g. properties about the specification of the system) and properties relating both aspects. Particularly, the formula JOINT includes the formulas INST and COMP. Formula INST is the conjunction of all instantiation axioms (it describes which elements of the metamodel are used to describe the particular system). Formula COMP is the conjunction of all completion axioms (it describes the basic behavioral blocks, such as local actions and states of the objects in the system). Both formulas can be automatically derived from the UML specification (see example in section 3).

3. Transparent use of the formal model

To gain acceptance of the proposed formal model by typical engineers, we are developing an automatic transformation method. This transformation method defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in the Unified Modeling Language (UML). The key components of the transformation method are rules for mapping the graphic notation onto the formal kernel model defining the instantiation axioms and the completion axioms.

[image: image2.wmf]

We illustrate the transformation method through an example. Figure 2 shows the UML specification of the bank system. Figure 3 shows the axioms derived from this graphic specification.

4. Related Work

There are a number of proposals providing formal foundations of object-oriented analysis and design techniques (particularly, graphical modeling techniques). According to the architecture of modeling notations, we classify them in two different groups: model-based and metamodel-based approaches.

· In the model-based approaches (e.g. see [Moreira and Clark 94, France et al. 97(a), Goldsack and Kent 96, Waldoke et al. 98, Wieringa and Broersen 98]) a formal specification of the system is generated from a semi-formal graphical object oriented model. The key components of this approach are rules for mapping syntactic structures in the graphical modeling domain to artifacts in the formal modeling domain. In this way, specifications expressed using a user-friendly notation have a semantics in the formal kernel model.

· In the metamodel-based approaches (e.g. see [France et al. 97 (b), Breu et al. 97, Klar and Geisler 97, Overgaard 98]), rather than generate formal specifications from each semi-formal model, the objective is to give a precise description of core concepts of the graphical modeling notation and provide rules for analyzing their properties. As a consequence of this precise description, the semi-formal models become formal and then amenable to rigorous analysis.

In [Pons 98] we analyze the principal differences between both approaches through an example. This analysis makes evident that the model-based approach is more appropriate for the specification of the information that is inherent to the application, whereas the metamodel-based approach allows the representation of constraints over the metamodel entities in a more adequate way. None of these approaches allows the specification of consistency constraints between entities belonging to different levels.
Figure 3: formal specification of Bank system

SpecBANK = (BANK,BANK)

where
BANK = MMM andBANK = UML(SYS(JOINT_BANK
JOINT_BANK = INST _BANK(COMP_BANK
Instantiation axioms INST_BANK
(m:Model

(Exists(m) (
((c1:Class

(c1(elements(m) (name(c1)=BankAccount

((a:Attribute

(a(attributes(c1) (name(a)=balance type(a)=Integer)

((p1,p2:Operation

(p1(operations(c1) (name(p1)=deposit (size(parameters(p1))=1 (type(first(parameters(p1))=Real (
p2(operations(c1) (name(p2)=withdrawal (size(parameters(p2))=1 (type(first(parameters(p2))=Real))

((h:StateMachine

(h(elements(m) (context(h)= c1 (states(h)={s1,s2}(name(s1)=debit (name(s2)=credit (transitions(h)={t1,t2,t3,t4,t5} (trigger(t1)=p1 (source(t1)= s1 (target(t1)= s2 (guard(t1)=(....)

 (effect(t1)= (...) (trigger(t2)= p2 (source(t2)= s2 (target(t2)= s1 (...........)))

Completion axioms COMP_BANK : this formula is integrated by state predicates and local invocation formulas.
· State Predicates: This formula describes the possible states of the objects belonging to BankAccount.

(o:Object (name(classifier(o))=BankAccount (

currentState(o)=debit (value(o,balance)(0

(currentState(o)=credit (value(o,balance)>0)

· Local Invocations: This formula specifies the invocation of a local operation (i.e. the message modifies the internal state of the receiver).
(o:Object (name(classifier(o))=BankAccount (

IsLocal(o,setBalance) (
(m:Message (name(specification(m))=setBalance ([o.m]value(o,balance)=first(arguments(m)))

5. Concluding remarks

In this paper, we have defined an object-oriented conceptual model representing the information acquired during object-oriented analysis and design. It fulfills the three requirements for conceptual models:

· Formality: the conceptual model has a formally defined syntax and semantics. It is based on order-sorted dynamic logic with equality.

· Usability: We address the problem of gaining acceptance for the use of an unfamiliar formalism by implementing an automatic transformation method, which defines a set of rules to systematically create a single integrated dynamic logic model from the several separate elements that constitute a description of an object-oriented system expressed in Unified Modeling Language.

· Flexibility: the conceptual model uses explicit representation of data and meta-data, allowing software engineers to describe evolution of system specification (e.g. evolution of business rules).

The principal benefits of the proposed formalization can be summarized as follows: the different views on a system are integrated in a single formal model. This allows one to define rules of compatibility between the separate views, on syntactical and semantic level. Using formal manipulation, it is possible to deduce further knowledge from the specification. The faults of specifications expressed using a user-friendly notation can be revealed and removed using analysis and verification techniques based on the formal kernel model.

The principal difference between this model and other object-oriented formal models is that this formal model integrates both of the levels in the architecture of the conceptual framework for modeling notations into a single conceptual framework based on Dynamic Logic (DL). This way, the formal model allows the specification of interconnections between the two different levels. This integration is particularly useful for the description of system evolution, for example, it is possible to formally specify how a modification made to a model impacts on the modeled system.

Most work in evolution of the system specification address the problem of structural evolution (e.g. change of the inheritance hierarchy, adding a new class) but do not deal with behavioral evolution (e.g. change the way an object reacts to a message). By animating the transition system defined by SpecMMM it is possible to simulate the behavior of the specified system and also it is possible to analyze the behavior of the system after evolution of its specification (either structural evolution or behavioral evolution or both).

References

[Breu et al. 1997] R.Breu, U.Hinkel, C. Hofmann, C.Klein, B.Paech, B.Rumpe and V.Thurner. Towards a formalization of the UML, In ECOOP’97 proceedings, LNCS 1241, Springer, June 1997.

[France et al. 97(a)] R.France, J.Bruel and M.Larrondo-Petrie. An integrated object-oriented and formal modeling environment, Journal of Object Oriented Programming (JOOP), 1997.

[France et al. 97(b)] R.France, E.Evans and K.Lano, The UML as a formal modeling notation, In Kilov, Rumpe and Simmons editors, OOPSLA’97 Workshop on Object-oriented Semantics, TUM-I9737.

[Goldsack and Kent 96] “Formal Methods and Object Technology”, Chapter 3: LOTOS in the Object-oriented analysis process. Editors S.J. Goldsack, S.J.H. Kent. Serie FACIT, Springer-Verlag, 1996.

[Klar and Geisler 97] Marcus Klar and Robert Geisler, "A metamodel for object-oriented systems", Fraunhofer Institut fur Software und Systemtechnik ISST, Berlin. Technical Report.

[Moreira and Clark 94] A.Moreira,and R. Clark. “Combining Object_Oriented Analysis and Formal Description Techniques”, In 8th ECOOP proceedings. LNCS 821. 1994.

[Overgaard 98] Gunnar Overgaard, A formal approach to relationships in the UML, Workshop on Precise Semantics of Modeling Notations, ICSE’98, Japan, April 1998.

[Pons 98] C.Pons. Formalizing object-oriented modeling techniques: a comparative analysis (in http://sol.info.unlp.edu.ar/~cpons/compara.html)

[Pons et al 98] C.Pons, G.Baum,M.Felder.’Integrating object-oriented model with object-oriented metamodel into a single formalism’. Second ECOOP Workshop on Precise Behavioral Semantics, 1998. (extended version in http://sol.info.unlp.edu.ar/~cpons/)

[Rational 97a] Rational. UML Notation {version 1.1. Technical report, Rational Software Corporation, September 1997.

[Rational 97b] Rational. UML Semantics {version 1.1. Technical report, Rational Software Corporation, September 1997.

[Waldoke et al. 98] S.Waldoke, C. Pons, C.Paz Mezzano and M. Felder, A Formal Approach to Practical Object Oriented Analysis and Design, Proceedings of ASOO, Buenos Aires, 1998.

[Wieringa et al.94] R.Wieringa, W.de Jonge and P.Spruit, “Roles and dynamic subclasses: a modal logic approach”, In ECOOP’94 Proceedings, Springer-Verlag, 1994.

[Wieringa and Broersen 98] R.Wieringa and J.Broersen, Minimal Transition System Semantics for Lightweight Class and Behavior Diagrams, Workshop on Precise Semantics of Modeling Notations, ICSE’98, Japan April 1998.

Figure 2: Graphic specification of Bank system

Class Diagram

State Machine

credit

debit

BankAccount

balance: Real

deposit (n:Real)

withdrawal (n:Real)

 t1

deposit(amount) [amount>-balance]

 setBalance(balance+amount-1)

 t4

withdrawal(amount)

 [amount(balance]

 setBalance(balance-amount)

withdrawal(amount) [amount>balance]

 setBalance(balance-amount)

 t2

deposit(amount) [true]

setBalance(balance+amount)

 t5

 deposit(amount)

 [amount(-balance]

 setBalance(balance+amount-1)

 t3

� INCRUSTAR CDraw5 ���

_963839928.unknown

