Position Paper For OOPSLA ’98 Workshop

“Metadata and Active Object-Models”

By: Peter Hatch

My Background:

I am a Master's Degree student working under Ralph Johnson at the University of Illinois. My background is in the modeling of complex biological systems and object oriented programming. Currently my interests include the implementation of object oriented languages and how the use of these languages and their accompanying tools can increase developer's productivity. My thesis centers on the construction of a scientific data analysis packages for doing quality assessments of the health of natural lands. I am also involved in the Linux port of ObjectShare's VisualWorks Smalltalk environment, working primarily with Eliot Miranda.

Two relevant projects:

I am working with the Illinois Department of Public Health (IDPH) to develop a framework of sorts to allow them to easily generate new programs that track various medical testing data. The effort is led by Joe Yoder and Ralph Johnson.

IDPH faces several challenges in this effort. Currently, we are working on programs which track infant immunizations, blood lead screening, and one which tracks screenings for five debilitating genetic diseases. In the past, different teams would develop each of these programs with little inter-team communication. This created a lot of redundant/duplicate code. We are working to help IDPH develop an environment that allows for the rapid development of new applications, a system that must also be able to handle programmer attrition.

The process involves the construction of a library of reusable components which future programmers can use. One of the main problems is that government organizations are not able to respond very quickly to changes in requirements, mostly due to a distribution of responsibility for various aspects of the programs they produce. For instance, if a database change is required for a new project that change will affect all programs produced prior to the new project and the existing programs must be made to accommodate the database updates. There are also many issues regarding the validity of data that is entered into the programs. The validity of a certain set of data might change as time goes by, so abstracting the rules for data validity is quite important. Different hospitals might need variations of these rules, so they cannot be hard coded.

We recognize that it probably isn't possible to build a black-box framework for this purpose, if for no other reason than the necessary flexibility of the system. Our system needs to be able to support all future application development, and hence must allow for the creation of new classes of objects. What we can do is recognize that certain rules exist for the treatment of data, and we can encapsulate/abstract those rules to the extent that new applications need only derive their rules and follow the guidelines for incorporating those rules into the system. This will allow for very simple customization of software to meet the specific needs of individual sites. For example, the Newborn Screening application requires that certain constraints be placed upon the birth date of an infant and the date on which a blood sample is taken. If those rules are abstracted then the logic of part of the Newborn Screening application can be reused for any blood sample-based application that may come in the future. In this way, portions of the Newborn Screening application can be reused for any future application where the blood samples' timestamps need to pass a temporal verification algorithm.

Another reason to incorporate this abstraction is that our system is still in it's infancy. Our database is going through constant changes, and if the developers were not able to abstract the domain-to-database interface we would spend much more time accommodating these changes. To put it simply, it makes our lives easier. In previous systems, even a minor database change required tens of hours to accommodate since the database-specific information was (seemingly) randomly dispersed throughout the application's structure. Certain tools like the Refactoring Browser made the changes easier, but they still involved a "search and replace" strategy at best. In the current system, the application's knowledge of the database has been abstracted to the degree that a single programmer can accommodate most normal database changes.

I am also working on another project, this one for a Chicago company (Conservation Research Inc.). The application is very simple on the domain level (it took only six days or so to implement), but the application/GUI level is more complex. The application is used for the analysis of quantified taxonomic data and generates statistical tables. These tables are used to gauge the health of a plot of land.

The challenge of this application is that different users need to enter their data in different ways. Configurability is a key requirement. Since configurability is only limited by the rules that the developer imposes upon the program, my goal is to abstract those rules to such an extent that the program is capable of accepting those rules from the user, thus enabling the users (who are largely computer-illiterate) to customize their application environments. This is proving to be a formidable task.

Observations:

I have notices that while the software design patterns used in these two systems are very important, even more important are the patterns for organizing the control of the software design/implementation process. It is very interesting to see this, having thought for a long time that the actual design of the software systems would be of the most importance to the overall effort.

When I began the project for CRI in Chicago, I was well aware from my prior experience and training that I would need to make the software resilient to changing specifications that came from things such as the use of alternate regional "databases". These databases are relatively simple monolithic structures that contain information about each of the plant species that exist in a particular region. Due to the nature of biological taxonomy, different regions have different ways of representing the same data, even to the degree that a particular plant might even have different scientific names in different regions of the country. To accommodate such things I abstracted them into first class objects so I could isolate the program from data variations. In this way, I am developing a pluggable interface to the different databases.

This kind of thing is very common in OO design, because we want the resulting software to be easier to maintain and expand to incorporate new facilities. What I've come to realize is that the process I go through as a developer to explore where these kinds of abstractions need to be made in the software model is very similar to the process I've had to go through to isolate myself from changing requirements motivated by the changing attitudes of the clients. My clients are not experienced with application development or with windows environments. As such, they are going through a learning process to discover what the actual specifications of the program are. This is different from having the requirements change due to outside forces in that the changes come from the clients as they discover what is possible in a windows environment (they are used to DOS environments). The solution to isolating the program from these changing requirements is the same regardless of the motivation of the change, but it is very important to recognize the changes that come from the clients as they explore different ways of organizing the program that they didn't realize were possible. To handle both types of change I am attempting to locate where the sources of change are, and encapsulating those regions into meta-data representations.

A very similar thing occurs at IDPH. They have a database (this time a traditional database in DB2) which is being designed at the same time the programmers (including myself) are developing the system that queries the database. Initially, we had a design for our enterprise components that required extensive alteration each time the domain analysts changed the database design. This happens sometimes on a weekly basis. After a while, we started to notice that about half of our time was spent dealing with modifications to the code that needed to be made to accommodate the database changes. Our solution was to form first class representations of the database tables. In this way, we have isolated ourselves from changes that come from the process of the analysts learning what their system should actually look like.

The major benefit I have received from these two experiences is that I now see that I can take advantage of the presence of meta-data not only to buffer my applications from a changing world, but also to buffer them from changes that come from clients as the clients learn more about their domain and how it can be represented by a computer.

Conclusion:

It is widely known that many domain models attempt to model systems which are influenced by outside forces thus creating a need for developers and analysts to try to abstract the meta-qualities from certain "hot spots" in the systems. This is needed in the process of assisting the domain experts in the development of their domain models. What is interesting is that a very similar process occurs as the developers try to elicit program requirements from the domain experts. There are hot spots in this interaction as well, certain places in the applications that change frequently that arise as the domain experts learn about how their ideas can be represented in their application. It has been valuable for me to learn to recognize those hot spots in the development process because they are every bit as important as those that occur in the process of modeling the domain.

