

Meta Data / Knowledge Management at Ingenix (United HealthGroup)

By Glenn F. Wong

Dale Panton

Eric Anderson

Michael Purdy

Tara Gustafson

At United HealthGroup (UHG) we have been in the meta data world for almost 5 years. Initially a data architect team identified a need for a Meta Data Repository to manage the information about the company’s data wherever it may be stored. After an evaluation of multiple products, R & O’s Rochade (now owned by Viasoft, currently being purchased by Compuware) was selected.

An architecture, GIT (Get Information Together) was defined that describes how UHG will provide a global data model and a single system image. GIT consists of three components – Meta Data Repository, Road Map and Data Access.

Figure 1: Three components of UHG’s (UHC's – United HealthCare) GIT architecture.

The GIT MDR contains all information needed to describe the data that exists in UHG including integrated logical data models, entity information, attribute information, logical to physical mapping, physical data source information, program information, job flow information, organizational ownership and organizational usage information. This data about the data is referred to as meta data and it describes all the characteristics about UHG’s information systems.

The meta data is related through the use of a meta schema which is essentially a logical model of the meta data. Since the meta data describes UHG, and UHG is constantly changing, it follows that the meta data and hence the meta schema must also change. The meta schema is the foundation of the MDR because it describes the contents and relationships of the data within. It also sets the MDR apart from traditional data dictionaries because it is dynamic and customizable to any organization – there are no limits.

The GIT Road Map has three primary functions:

· It knows where the data is within UHG based on the physical structure (file, table, parameter or any structure that is input or output to a program in UHG) name.

· It decomposes a SQL statement into individual pieces that can be shipped, based on the physical structure name, to the appropriate Access Enablers.

· It reconstructs the individual result sets from each Access Enabler into a single result set for the requester.

The Road Map provides true location transparency of data because the SQL statement does not need to indicate where the physical data is stored, only what the physical structure name of the data is. Refer to figure 2 for a pictorial view of this concept.

Figure 2: Pictorial view of GIT Road Map XE "GIT Road Map" decomposing a single SQL statement into sub-SQL statements which are shipped to appropriate Access Enablers XE "GIT Access Enabler" .

GIT Access Enablers XE "GIT Access Enabler" retrieve data from a data source using a SQL statement. If the data source is not a Relational Data Base Management System XE "Relational Data Base Management System (RDBMS)" (RDBMS), then the SQL is translated to the non-relational format of the data source. The resulting data is translated from the non-relational format to a relational result set which is returned to the calling program XE "GIT Road Map" . The Access Enablers eliminate the need to know about proprietary access languages by providing translation to and from SQL.

This then describes our thoughts for the initial implementation at UHG. In actuality, only the MDR piece has been implemented as described. We also found out that humans should probably not write SQL. If the meta data is good enough throuhg the use of Intelligent Middleware we can generate the SQL.

The new proposed architecture at UHG is more of a Layered Information Systems Architecture. Basically you have an Application Layer that accesses Generic Business Function Layer tied by Knowledge Based Middleware to the Information Access Layer which through semantic information and structural mappings accesses the source / Information Holdings Layer.

This new architecture will consider integration of the information sources, rather than integration of the existing legacy systems that create and dispense the information, is a way to achieve a more strategic solution to the multiple source system integration problem.

The primary idea behind the architecture is that the information sources are separated from their current legacy application packages and are brokered by a “thick” (knowledge based) middleware layer. This strategy provides the freedom for any application to access any information. In addition, applications as such become rather “thin”, implementing just the user interface that interacts with common, generic business logic modules that in turn access data in consistent, multidimensional ways. This kind of integration can be achieved without forcing a common format on all the legacy data and without substantially changing the structure of the legacy data. A brief description of each of the infrastructure layers follows:

Information Holdings Layer

The collection of all information sources, including their storage systems.

SYMBOL 149 \f "Times New Roman" \s 14 \h
The sources are heterogeneous and distributed.

SYMBOL 149 \f "Times New Roman" \s 14 \h
There is but one copy of each source.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Sources include:

SYMBOL 149 \f "Times New Roman" \s 14 \h
All existing legacy databases and warehouses.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Newly generated databases and warehouses.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Future object oriented databases.

SYMBOL 149 \f "Times New Roman" \s 14 \h
All text sources that support the business.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Multimedia sources: graphics, imagery, video, audio.
Knowledge Based Middleware Layer

SYMBOL 149 \f "Times New Roman" \s 14 \h
Provides location and format independence for all information.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Accepts generalized queries for all information using a universal common query language.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Translates access requests into information source-specific requests.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Contains maps and indices for accessing any information in the Information Holdings Layer. These are structural models of all information.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Contains maps and models for how all information is interrelated. These are semantic models of all information.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Performs composition of diverse information sources for context-specific use.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Delivers information in a universal common format.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Resolves information ambiguities existing in the diverse legacy.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Implements security and regulatory constraints depending on access context.

Generic Business Function Layer

SYMBOL 149 \f "Times New Roman" \s 14 \h
Provides generic utilities (agents) for performing business functions that are common across many application contexts.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Examples:

SYMBOL 149 \f "Times New Roman" \s 14 \h
A claim service utility that manages and provides information about claims for any member and/or provider.

SYMBOL 149 \f "Times New Roman" \s 14 \h
A medical management utility for offering advice about appropriateness of procedure, case management, and disease management.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Provides the functional "building blocks" from which applications can be assembled.

SYMBOL 149 \f "Times New Roman" \s 14 \h
Contains the standard interfaces for browsing and manipulating information accessible through the lower framework layers.

By evolving the architecture and changing the way we think, we can evolve to the concept of active meta data and business objects. See figure 3 for a pictorial view of this concept.

[image: image1.wmf]Data Owner

Application

Rochade

Metadata

Repository

table-1

db-table

table-2

view-1

db-view

member id

db-column

db

COSMOS

member

Plan A member

Plan B member

TOPS member

claim

provider

member

Active Semantic Model

Active Structural Model

Requests information

from semantic broker

Notifies Rochade of

changes in schemata

Parsing and model

building of

structural metadata

Generates SQL query

or uses existing RPC

Heterogeneous

Data Sources

Architect and

Administrator

Designs and

maintains metadata

configuration

Humanly crafted

semantic model

Data User

Application

Figure 3: Pictorial view of Information Brokering Using Active Metadata

_842861389

_999409253.doc
���

db

Data User

Application

Active Semantic Model

Active Structural Model

Humanly crafted semantic model

Designs and maintains metadata configuration

Notifies Rochade of changes in schemata

Architect and Administrator

Data Owner

Application

Heterogeneous Data Sources

Generates SQL query or uses existing RPC

Parsing and model building of structural metadata

Requests information from semantic broker

COSMOS member

member

TOPS member

Plan A member

Plan B member

provider

claim

db-table

table-1

table-2

db-view

db-column

member id

view-1

Rochade

Metadata

Repository

_839680595

