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A computer system can be decomposed into a hierarchy of layers and various decompositions have been proposed. One of these considers functional and nonfunctional layers [Fer95].  As shown in Figure 1, the highest functional level is the application layer and security constraints can be considered as defining a filtering layer that  allows users to access  the application according to these constraints.

A fundamental aspect of  current systems is that the highest level is not the database level as assumed in most of the current security literature, but the application level, where the conceptual enterprise models, both static and dynamic are defined. It is here where the security policies  of the institution should be applied. At this level the semantics of the application is well understood and roles can be used to apply the need-to-know policy [Fer97].
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                                   Figure 1. The layers of a computer system

The lower levels enforce the restrictions defined at the security level [Fer99]. Authorization can be defined in terms of objects as shown in Figure 2 [Fer93], and applied to the conceptual level as shown in Figure 3 [Fer96]. 

[image: image2.wmf]Employee

ShopOrder

create

cut

pick

OrderEntryEmp

MfgEmp

create

cut

pick

Right

Right

*

*

*

*


                                     Figure 2. An authorization rule.

In other words, we can consider authorizations as defined at the metadata level. Other nonfunctional aspects, e.g., fault-tolerance, correspond to lower levels of the architecture as shown in Figure 1, but their specifications could  also be defined at this level.

In fact, this is not really new, authorization restrictions in relational databases are stored as metadata, as is done in System R and later commercial versions of SQL databases. 

In the application level we can define authorization patterns; for example, the authorization rule of Figure 2 is such a  pattern. Another pattern   that defines the rights of role hierarchies with respect to institution divisions, is shown in Figure 4. The general structure of Role-Based Access Control (RBAC) can be summarized as in Figure 5, which represents the model proposed by Sandhu et al. [San96].  In this figure, users are assigned to roles (UR mapping ), roles are given permissions (PA mapping), users interact with the system through sessions, from where they activate roles. Roles can include other roles, described by the composite pattern. Finally, roles and permissions are divided into regular ones and administrative ones.
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                       Figure 3. Authorizations at the conceptual level.

                                                 Figure 4. A security pattern

Note that these constraints are really cross-level constraints since they apply to entities in the application level. To separate levels we can define proxy classes in the security level that represent the corresponding application classes.

These security patterns can be applied to analysis patterns to define semantic subsystems that combine the advantages of patterns with the advantages of high-level security definition [Fer98a]. Other security patterns at this level are defined in [Ess97] and [Yod97].

We can use reflection from the application to the metadata level to dynamically adapt to changing conditions.  Either structural or channel reification are possible [Anc98]. Reflection patterns can be found in [Bus96] and  [Fer98b]. In the case of reflection, the proxy classes described above become reification classes that can control the behavior of the application classes.

These patterns are just a beginning in the use of authorization in a metalevel. Many other patterns are possible and a catalog would be an interesting study. It should also be possible to define patterns that span levels to enforce the high-level security constraints.
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                                           Figure 5. RBAC model
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