From Analysis To Design of the Observation Pattern 10/27/99

From Analysis to Design of
the Observation Pattern

Joseph W. Yoder

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

j-yoder@uiuc.edu
Federico Balaguer

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

balaguer@uiuc.edu

Ralph Johnson

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

johnson@cs.uiuc.edu

Abstract

Analysis Patterns are very powerful concepts that are useful in describing recurrent problems in term of the elements or concepts that are present in a domain. Martin Fowler presents some very useful Analysis Patterns, specifically when it comes to problems that deal with making observations about parties (organizations and people) over time. We have had to develop quite a few applications that capture medical observations about patients. There are many problems encountered when trying to take Martin's patterns from analysis to design and implementation. This paper discusses how we extended the Observation pattern to work in our environment and the details on how to implement it.

1. Introduction

Object models almost always start out as monolithic (static) models that can only be adapted to new requirements after mass reorganizations of code and classes. Usually, a set of refactorings has to be made to improve the design to get the model ready for the modifications [Opdyke 9XX], [Roberts97], [Tokuda99]. The developer’s domain knowledge drives the transformation from a monolithic model to a flexible one. This transformation takes time, resources, and a well-known cycle of iteration is needed to transform the more basic architecture into a framework [Roberts98].

Fowler [Fowler97] presents some Analysis Patterns that describe dynamic models can that adapt smoothly to new requirements without necessarily needing the programmer to change the way that objects interact. Analysis Patterns are quite different than Design Patterns. Analysis Patterns describe recurrent problems in term of the elements or concepts that are present in a domain. Analysis Patterns express the domain knowledge acquired based on previous experiences. Analysis Patterns will influence how the code is designed but does not directly deal with implementation details as is done is Design Patterns. We apply Analysis Patterns in the medical domain
.

This paper present the results of our experience implementing the observation model for the Illinois Department of Public Health. Section 2 presents a brief description of the requirements we found for modeling observations and a very first solution for the problem. Section 3 and 4 describe the two main features we add to the Fowler’s observation model such as: CompositeObservation, and Validators. Section 5 presents the final architecture. Section 6 presents some implementation issues that we think are important to share. Section 7 and 8 discusses results and summary.

2. An Introduction to the Observation Model

Many applications at the Illinois Department of Public Health (IDPH) have similar requirements. They manage information about patients and people close to the patient, such as parents and doctors. The programs vary in the kind of information (and the representation) they manage. One of the most important aspects of the projects is the underlying effort on creating a common layer composed of domain objects, which conforms the base for the sharing information among different applications and hospitals.

Typically, the information being shared is a set of observations [Fowler97, Hays96] about people. An observation is quantification about a given phenomenon; this concept is widely applied in a domain related to tests, samples, and measurements. Observations play a large role in the medical domain because it makes it possible to associate specific conditions and measurements with people at a given point in time. Some typical medical observations are eye color, blood pressure, height and weight.

One way to implement observations is to build a class hierarchy describing each kind of observation and associate these observations with patients. This approach works when the domain is well known and there is little or no change in the set of observations. For example, one of the applications that is being deployed at IDPH is an application for screening new born babies for a few genetic diseases. In this application, certain observations about the baby are made at the time of birth such as height, weight, feeding type, gestational age, and mother's hepatitis B indication. A natural implementation for this would be to create a class for the infant, and create another set of classes and associate them with the infant to capture the above noted observations (see Figure 1).

[image: image1.wmf]PhysicalMeasure

Observation

Infant

Hep-B

Ind

FeedingType

GestationalAge

Height

Weight

Figure 1 - New Born Screening Infant Observation Class Diagram

Another application that is being developed at IDPH is for following up with high risk babies. This applications needs to capture observations about the infant and the infant's mother such as HIV status, drug and alcohol history, hepatitis background, gestational age, weight at birth and the like. One possible class diagram for capturing these observations is depicted in Figure 2.

[image: image2.wmf]PhysicalMeasure

Observation

Infant

HIV Status

AlcoholProblem

GestationalAge

Height

Weight

Mother

Figure 2 - High Risk Infant Observation Class Diagram

The two class diagrams are similar. We quickly noted that many of our applications shared a similar hierarchy and required that observations captured in one program to be eventually used in the other applications. We also noted that there were really two basic types of observations.

 First, there are those that deal with a discrete set of values such as blood type and eye color. Second, there are also those observations that have as values a quantity such as weight in grams, height in feet and inches. We have had some experience with Martin Fowler's analysis patterns and used them as the foundation for our analysis work.

Fowler observation pattern also has two main categories. One is for making observations that contain a finite discrete set of possible values such as eye color or gender. These are called Traits. Another type of observation contains sets of ranged values that can have any numeric value and possibly an appropriate unit. These types of observations are called Measurements. The Observation Model describes very well our initial knowledge of the domain. The users of the systems need to attach different kinds of observations to patients such as: hair color, eye color, weight, height, feeding type, blood pressure, blood type, etc. After some analysis for IDPH, we came up with a first set of observations that might likely be shared between applications and hospitals. Figure 3 shows what the resulting architecture might look like for some of these observations such as height, weight, eye color, hair color, and gender.

[image: image3.wmf]PhysicalMeasure

Blood

Observation

Person

Measurement

convertTo:

Trait

traitValue

Quantity

unit

value

convertTo:

EyeColor

HairColor

Gender

Height

Weight

…

…

Figure 3 - Static Architecture based on Subclassing

Each Person has a of observations. Measurements have quantities as values. Quantity expresses the relationship between a number and a unit. For example the weight of a rock could be expressed in grams; if our rock is a mid size sample the value could be 1050 grams. Thus, we can say that the weight observation of the rock is 1050 grams. Quantities allow for the possibility of converting units (i.e. 1 inch to 2.54 centimeters). It very well might be the case that the weight of a baby was captured in grams and then displayed in pounds and ounces. The design described in this paper uses an implicit model of quantities which is able to describe by itself the legal set of operations as well as the conversions among units [Fowler97, Hays96, www-ref?].

It was pretty straightforward to describe these classes and it is also easy to extend behavior for these observations by simply programming each class with the needed behavior. On the other hand, if new specifications for observations are needed or new types of observations are realized, this approach lacks the ability to add or change observations without writing lots of code. This is because each time a new kind of observation is needed, or a current observation needs to change, either a new class has to be built, or the existing class has to be changed to reflect the new requirements. Afterwards a new release of the observation application has to be generated and distributed. Thus, there is a trade off between the simpler solution and the fact that we are sure that the architecture will have to be modified in the near future. Fowler’s Analysis Patterns [Fowler97] gave us insight on dealing with the problem we faced.

The main insight Fowler gave us was a way to think about and represent our problem dealing with capturing observations for a person over time. His patterns offered us quite a few different models. Each model described a different level of flexibility and each model included a different level of complexity for representing and implementing the models. Fowler does not describe implementation details and after our first pass at analyzing the problem, we faced the task of implementing the patterns in Smalltalk. After looking at the model, it became apparent that it can be implemented using the TypeObject pattern [Johnson98].
Figure 4
 is a UML class diagram for implementing the first complete observation model presented in Fowler’s book (page 43). Persons have Observations associated with them. There are two kinds of Observations: Measurements and Traits. Measurement represents those observations which are values in a continuos scale (then there is a unit associated to the value) e.g. 5 feet for height, 180 pounds for weight, etc. Trait represents discrete observations of a Party, such as blond for hair color, blue for eye color, AB for blood type, etc. The ObservationType describes the subject of the associated observation (e.g. height, weight, blood pressure, etc).

The original diagram presented by Fowler includes a class called CategoryObservation, which is linked to a Category. In our model CategoryObservations are replaced by Traits and Categories are replaced by using literal values
, thus we do not add this class in the diagram. We renamed Fowler's Phenomenon to ObservationType. We decide to change the name in order to express the relation with the TypeObject design pattern [Johnson98].

[image: image4.wmf]Observation

ObservationType

phenomenonType

Person

name

Measurement

convertTo:

Trait

traitValue

Quantity

unit

quantity

convertTo:

Figure 4 - Class Diagram of the Basic Observation Model

Figure 5
 is a simple Instance Diagram with an example of a Person named Smith. Smith has a height observation with a value of 5 feet and an eye color observation with a value of blue. Note that the first Observation holds onto an ObservationType object which has a phenomenonType of #height, and a Quantity object which holds onto the value of 5 for quantity and feet for units.

[image: image5.wmf]

aPerson

name <Smith>

obsCollection

aMeasurement

type

value

anObservationType

 #

height

aQuantity

value <5>

unit <ft>

aTrait

type

value <blue>

anObservationType

 #

eyeColor

Figure 5 - Instance Diagram of the Basic Observation Model

As shown in Figure 5, there is an instance of ObservationType for each different kind of observation. Thus, to add a new kind of observation, create a new instance of ObservationType and add it to the model (for more details see the TypeObject pattern [Johnson98]). This allows one to create new types of Observations without requiring a new version of an application. This model was the starting point for our work and an excellent tool for communicating with the domain experts.

3. Composite Observations

The model obtained in the last section can be used to represent most observations. However, some observations are more complicated. For example, a “cholesterol” observation for a patient is composed by two independent measures; HDL and LDL. HDL and LDL can also be modeled as observations. Often, the HDL observation is used independently and the LDL observation is only considered when the HDL observation value is high.

Fowler's model does not directly consider these multi-value observations. Fowler allows for observations like this to be modeled as independent observations, but doesn't present a model to group observations from a set of other observations. He does extended his basic model to allow for compound units for observations which represent values such as area (square yards) and speed (feet per second). The main difference is that compound units is a way to allow for a quantity to be represented in terms of this multi-value relationship; for example speed is a number with a compound unit and can be represented as miles per hour or feet per second. Composite observations are observations that are composed of independent observations. From the user’s perspective we can say that the units of atomic observations do not need to be combined.

Another example where composite observations make sense can be seen with observations for blood test results; this is something that we needed to model for our work at IDPH. A blood test observation can be composed of many individual observations of different types. Some may be measurements such as white blood cell count while some of the values may be traits such as blood types. Others could be an overall observation of a patient's health that includes many observations such as blood pressure, pulse, vision, and reflexes.

Fowler’s model also allows for observations to be associated, which allow for observations to be linked to each other in a diagnostic manner (for example, thirst indicates diabetes). This is a very useful concept in the medical domain but it still did not model the way we wanted to represent multi-valued observations.

Fowler's model could be used to represent multi-valued observations as individual observations. This could have worked for us but we really wanted to be able to group these individual observations together into one observation. Thus, we extended Fowler's concept by applying the Composite pattern [GOF95]. This allows observations to be composed from other observations. Therefore, a cholesterol observation can be composed by two atomic observations of HDL and LDL. The resulting architecture can be seen in Figure 6.

This composition still allowed us to capture the compound units for observations, and allowed us to describe more complicated observations like those above. It also makes it easier to use observations such as HDL independently of the cholesterol observation but still be used in the composed observation of cholesterol as a whole. Notice that this model includes a concept called party, which is something that Fowler uses to model organizations and people.

[image: image6.wmf]ObservationType

phenomenonType

Party

Measurement

value

value

value:

convertTo:

Trait

value

value

value:

Quantity

CompositeObservation

values

Observation

RecordedDate

 comments

Figure 6 - Class Diagram of Composite Observations

An instance of CompositeObservation can be composed of any kind of observation (Composite Pattern [GOF95]). In this way it is possible to define a complex Observation based on basic/atomic ones. For example, an observation about the blood pressure could be described in terms of a composite observation. The “diastolic pressure” and the “systolic pressure” are the components of the “blood pressure” observation (as a composite). Figure 7 shows an instance diagram for this blood pressure example.

[image: image7.wmf]anObservType

<#

BloodPressure>

aMeasurement

<

aQuantity>

aCompObs

anObserType

<#SYSTOLIC>

anotherMeasurement

<

anotherQuantity>

anObser

-Type

<#DIASTOLIC>

Figure 7 - Example of Blood Pressure

Notice that the instance of CompositeObservation (with type #BloodPressure) and the instances of Measurement are associated with different instances of ObservationType (aMeasurement with #SYSTOLIC and anotherMeasurement with #DIASTOLIC). It makes clear the difference between these two different observations. This model covers the requirement of recording information related with each atomic observation as well as composite observations.

4 Validations

At this point we faced a couple of new problems. First, there was no imposed structure on the observations; a cholesterol observation could be composed of observations such as height and weight instead of HDL and LDL. Mirroring the ObservationType hierarchy to be similar to the Observation hierarchy easily solved this problem. Eiffel's type system is designed under the assumption that parallel hierarchies are common [Meyer9x]. The main problem with parallel hierarchies is with maintenance. Every time you have to add or change a class in one hierarchy you have to make sure you look at the other hierarchy to see if you need to either add or fix a class.

This is not necessarily a bad thing, just something to watch out for. If you are not adding classes very often, then it should not cause many problems. In our example, we did not need to add new ObservationTypes. It is a simple structure so there are not really any maintenance problems. The type hierarchy is used to define the legal structure of the observations. During creation of the observations the type is asked if the structure being created is valid or not.

Another problem we faced was that the relationship between the value of the observation and its type is not yet completely realized by the proposed architecture. In fact, any value or quantity could be assigned to an instance of Observation whether that assignment is valid or not (in terms of the domains rules). It means that these rules have to be recorded in the head of the programmer (in order to validate inputs from the GUI) or in the head of the final user.

One solution to this problem is to extend the architecture to add some part of the responsibility of validation to the ObservationType; afterward the model could describe by itself the validation rules (extracted from the domain). Nguyen and Dillon [Nguyen98] presented a similar idea in “An Alternative Solution to the Observation Pattern Problem.”. The validation only takes care of the values entered by the user and check the validity of those values in order to create new instances the Observation hierarchy.

The proposed architecture allows for different types of observations, “measurements,” “traits,” and “composed observations” to describe their structure and relevant validation rules. The subject of each observation is defined by one particular instance of the class ObservationType. As previously mentioned, it is possible to extend each type for describing the set of possible valid values associated with them. Some of these valid values could be shared between different types of observations, e.g. any observation quantifying the presence of any illness has three possible values such as YES, NO, UNKNOWN. The resulting architecture for Validators is shown in Figure 8.

[image: image8.wmf]Validator

RangedValidator

intervalSet

validUnit

ObservationType

phenomenonType

validator

DiscreteValidator

descriptorSet

NullValidator

Figure 8 - Architecture for Observation Validation

Each ObservationType is associated with an object that is responsible for determining whether a value is valid or not. A class hierarchy of Validators had been developed and dynamically plugged in at run-time. However, analysis revealed that there are two basic kinds of values that could be the quantifier of an observation; first, a quantity (a single values of a continuous scale) e.g. height, weight, etc.; second, categories (single values, constants) e.g. eye color, hair color, etc. This allows for the ObservationTypes to be extended with types of Validators. This can be done by associating each instance of ObservationType with an appropriate Strategy [GOF95] for validating the types.

So, an observation uses a TypeObject to describe its type of observation, which in turn uses the Strategy pattern to describe its Validator. Descriptive data (metadata) can then be used to associate and instantiate the appropriate Validators with the appropriate types of observations. This use of the TypeObject and Strategy patterns is commonly seen in dynamic meta-architectures. Foote and Yoder [Foote98] describe these types of dynamic architectures in more detail.

Each subclass of Validator records a different class of valid elements. In the case of the DiscreteValidator, it knows a collection of valid constants (e.g. blue, green, and brown for valid eye color). In the case of the RangedValidator, it contains a collection of intervals where a value is valid and unit in which the quantity of the measure is “legally” expressed.

Instances of Trait are always associated with an instance of DiscreteValidator and instances of Measurement are always associated with an instance of RangedValidator. Thus, DiscreteValidator and RangedValidator are just describing the difference between the values they are expecting to store in the #observationValue variable. Therefore, rather than having two classes for representing traits and measurements, a single class representing PrimitiveObservations can model the Measurement and Trait classes. Different types of traits and measurements are realized by associating the ObservationTypes to their respective Validator class (DiscreteValidator and RangedValidator).

5. Final Architecture
Figure 9 shows the resulting class diagram for the implementation of observations with Validators. Party is an abstract concept described in Fowler's book for dealing with dynamic organizations and people. Parties have Observations associated with them, which uses the Properties pattern [Foote 98] for maintaining a dynamic list of them. The Observations can either be PrimitiveObservations or CompositeObservations. Each Observation has its ObservationType associated with it, which describes the structure of the Observation and hangs on to the validation rules through its relevant Validator. Therefore, the ObservationType is used to validate the structure and the values.

[image: image9.wmf]

ObservationType

isValid:

obsValue

phenomenonType

Party

Primitive Observation

observationValue

CompositeObservation

Observation

isValid

recordedDate

comments

Validator

isValid:

obsValue

validatorName

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnit

PrimitiveObservation

Type

CompositeValidator

logicOperand

CompositeObservation

Type

NullValidator

Quantity

unit

quantity

convertTo:

Figure 9 - Class Diagram of the Final Architecture

An instance of PrimitiveObservation represents atomic observations. Instances of CompositeObservations represent compound observations. The TypeObject takes care of the structural properties of the Observation that it is describing. CompositeObservationType is used as a descriptor to create and validate any kind of CompositeObservation. All ObservationTypes have a Validator associated with them. Note that instances of PrimitiveObservations class do not understand the #convertTo: method, this responsibility is directly delegated to the Quantity associated with the Observation. RangedValidators also have an interval set of Quantities, which describe the sets of valid values for the ObservationTypes. The NullValidator is an example of the NullObject pattern. This is the default Validator that always returns that the value is valid. The CompositeValidator allows for its associated CompositeObservationType to be validated by any function of its components. The default is to have CompositeObservationTypes to be valid if all of its components are valid.

The ObservationType hierarchy provides the knowledge to create instances of each type, as it is common the ObjectType affects the instantiation process, in this case the ObsevationType are responsible of creating new instances with the right structure. For PrimitiveObservation the structure is trivial, but for CompositeObservations the structure has to be correctly established.

Example
There are several “medical programs” currently implemented in each hospital of the State of Illinois. One of those medical programs takes care of the general condition of each new baby. When entering in data for each new baby their parent’s demographic data as well as the baby's physical characteristics data is entered into the system. These characteristics are a bunch of Measurements and Traits such as blood type, height, weight, gestational age, feeding type, hepatitis B indication, and so on. After the first 24 hours of life, a number of tests are made using the few samples of the baby’s blood (blood-specimen). The result of each test becomes an observation related with the baby.

Sometimes the doctor requests more specific tests for the baby. For example, if galactacenia (GAL) tests positive, the physician will request another test called UDT. Therefore, UDT is a “sub-test” of the GAL general test. When the doctor requires the UDT test, the result is a “composition” of both results (GAL, and UDT); the doctor can not understand the UDT-result without the GAL-result. Figure 10 shows an instance diagram of this composite observation.

[image: image10.wmf]anObserv

-Type

<#COMP-GAL>

aMeasurement

<

aQuantity>

aCompObs

anObser

-Type

<#GAL>

anObser

-Type

<#UDT>

anotherMeasurement

<

anotherQuantity>

aRangedValidator

anotherRangedValidator

Figure 10 - Instance Diagram from the Composite-GAL Result

Figure 10
 is a simple example of a composite observation. Only when the UDT-result is the complement of the GAL-result, the overall test makes sense to the doctor. We found more complex and nested instances of this kind of observations when implementing results for general (and complete) test over the blood itself (pressure, type, red cells, blank cells, cholesterol level, etc.). Figure 11 shows an Instance Diagram where both a COMP-GAL result and gestational age are attached to a baby.

[image: image11.wmf]

anotherRangedValidator

anInfant

name

obsCollection

aMeasurement

type

value

anObservationType

 #

GestationalAge

aQuantity

value <36>

unit <weeks>

anObserv

-Type

<#COMP-GAL>

aMeasurement

<

aQuantity>

aCompObs

anObser

-Type

<#GAL>

anotherMeasurement

<

anotherQuantity>

anObser

-Type

<#UDT>

aDiscreteValidator

aRangedValidator

Figure 11 - Instance Diagram of Two Observations Attached to a Baby

The Infant instance is actually an instance of Party. The Infant has a collection where it stores each Observation. There are a number of instances involved in getting the information for each baby. On the other hand, the model makes it possible to create new kinds of Observations as well as the validation rules on the fly. The creation and maintenance of the observation’s functionality is a responsibility of the system administrator, who can create, edit or modify the set of Observations directly from the database or using editors and browsers that we specially make for this task.

6. Implementation Issues

There are two important issues that need to be solved in order to solve the implementation problem for observations. First, how do you persist your observations for future reference, and second, how to present the observations to the final user?

If an object-oriented database is used, then persisting these objects is very easy since all you have to do is just persist all of the objects that we have presented. However, all of the applications that we developed needed to map to a relational database as a standard way to store the information. Because some hospitals have a lack of infrastructure, the application needed to be able to store the information in single user databases. Other times we needed to map our objects to larger database managers. Part of our work involved the development of standards to produce the mapping from the object model to the relational model. We generally created a single table for each class, storing many to many relationships in a separate table. These are many patterns that describe some standard ways for mapping objects to relational databases [references!!] and we developed our mapping object standards using these patterns. Having control over the database design made our job of persisting objects fairly easy and straightforward.

If however, you are mapping to a legacy system or do not have control over the data model design, this mapping can become more complex. These problems can be simplified by creating a mapping layer that deals with the problem of getting the values for instantiating the observation, types, and validation objects.

There are also important GUI issues that need to be considered when implementing this dynamic architecture. The model we presented makes it very easy to create new observation domain objects but the values still need to be entered and presented through some user interface. For whatever observations your application needs, some sort of view needs to be developed for the user. These views could all be developed for each application without getting any benefits of reuse. However, it is possible to extend ObservationTypes to allow for some standard views and make building GUIs for observations easier.

For example, PrimitiveObservationTypes are presenting either a ranged value, or a discrete set of values, which might be presented in a list or as a textual string. Therefore these types of GUIs can be developed and associated with the types.

It becomes a much harder problem when trying to build GUIs for presenting CompositeObservations to the user. One possible way to present these types of observations to users is through the use of hierarchical tree view such as those used in the Netscape preference dialog. ***COULD USE OTHER IDEAS HERE ***

ANOTHER IMPORTANT IDEA HERE is to mention time and duration for observations and to talk about creational patterns.

Another implementation issue deals with how CompositeObservations get their values. Currently CompositeObservationTypes get their values from all of its components. CompositeObservationTypes could be extended to allow for its value to be derived from a function of all of its components. For example, a cholesterol observation could have a value of OK if its HDL value is within a valid range and its LDL value is within a valid range. It would have a value of NOT-OK if either one of its components (HDL or LDL) values are outside of there valid range. Thus, in this example, the value for cholesterol is similar to a Trait while its components of HDL and LDL are Ranged observations.

After implementing the Validators separately from ObservationTypes, we saw that there are really only a few types of Validators in our domain that are shared. These are YES/NO, POSITIVE/NEGATIVE, and WEIGHT. There may be more but most Validators are not shared. With this in mind, we could change our design to incorporate the Validators into the ObservationTypes. This would lead to five types of Observations; RangedObsType, DiscreteObsType, YES/NOObsType, POS/NEGObsType, and WeightObsType. In fact, YES/NOObsType and POS/NEGObsType might be subclasses of DiscreteObsType and WeightObsType might be a subclass of RangedObsType. This would remove the use of the second TypeObject pattern. This new model is simpler to understand and debug, since you know exactly what your validation method is for each ObservationType. However, if you get a large class structure of ObservationTypes, it might be easier to maintain and add new types based upon the original model.

7. Results

Fowler's observation model is rich in variations and extensions, but only part of the whole pattern was needed in order to solve our requirements. One of these possible extensions to the original model, [Fowler97] is presented on page 50 as “Associated Observation”. In particular this architecture deals with ways to record the chain of evidence behind a diagnosis. In our case we can build these types of diagnosis by creating composite observations. However, we did not have a need to model diagnosis since there were many legal issues that we did not want to get involved with.

The architecture proposed in this document handle simple observations (Measurement and Trait) and complex observations (CompositeObservation). This architecture is based on the Composite design patterns [GOF95]. Because the former composes the last one, in a very general way both are “associated”; but the semantic of the relationship is different from the idea expressed by the “associated observation” architecture. In fact, any class hierarchy and most of the design patterns have associative relationships. The problem is that general associations can be confusing until you give the associations meaning such as class hierarchy or composite. Martin discusses this in detail in his UML book [Fowler 97].

By extending ObservationTypes to describe the structure through the use of the composite pattern and by having the observation types contain their respective Validators, we were able to provide a means for making sure that we get desired values for observations. As we first started to apply Fowler’s model, we created Traits and Measurements in order to capture the elements of the domain. We eventually evolved to where we had both kinds of Observations modeled by associating observations with a type of Observation and the rules that validates the values of it. In our final model a Trait is a PrimitiveObservation associated with a DiscreteValidator; while a measurement is a PrimitiveObservation associated with a RangedValidator. This is true because we ensure that any public method in any hierarchy is correctly implemented. Thus, the only difference between a Trait and a Measurement is the type of value they are expecting to store.

Fowler talks about using observations in the financial domain. We have seen that we can also use observations on other domains such as inventory systems and licensing systems. For example, in an inventory system, it is easy to dynamically specify facts or events that could modify the valuation of certain item. Those events could be primitive as well as be composite ones.

8. Summary

As we faced the problem of implementing some of Fowler's Analysis Patterns for observations, we found some important aspects that should be considered in order to get successful results. Fowler's basic model is a powerful abstraction that provides a good way for looking at observations, specifically in the medical domain. We found some nice extensions to his patterns that allowed us to deal with some of the issues that we did not see how to immediately solve with his proposed model. There are many design patterns that greatly assist with the implementation of the analysis patterns. The most important design patterns needed for implementing observations are those that are common to most dynamic systems such as Composite, Type-Object, Properties, and Strategy.

The architecture described here is the results of implementing these for applications that are being developed for use in the medical domain at the Illinois Department of Public Health.

9. Acknowledgements

We are grateful to the Illinois Department of Public Health, in particular XXX; the University of Illinois pattern group (To Be Named); and

10. References

[Foote98]
B. Foote, J. Yoder. “Metadata and Active Object Models”. Proceedings of Plop98. Technical Report #wucs-98-25, Dept. of Computer Science, Washington University Department of Computer Science, October 1998. URL: http://jerry.cs.uiuc.edu/~plop/plop98.

[Fowler97]
M. Fowler. Analysis Patterns, Reusable Object Models. Addisson Wesley. 1997.

[GOF95]
Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[Hays96]
D. Hays. Data Model Patterns, Convention of Thought. Dorset House Publishing. 1996

[Johnson98]
R. Johnson, B. Wolf. “Type Object”. Pattern Languages of Program Design 3. Addisson Wesley, 1998

[Meyer96]
B. Meyer. Object-Oriented Software Construction, 2nd Edition. Dorset House Publishing. 1996

[Nguyen98]
N. Nguyen, T. Dillon. “An Alternative Solution to the Observation Pattern Problem”. Proceedings of Plop98. Technical Report #wucs-98-25, Dept. of Computer Science, Washington University Department of Computer Science, October 1998. URL: http://jerry.cs.uiuc.edu/~plop/plop98.

[Roberts97]
D. Roberts, J.Brant, R. Johnson. “A Refactoring Tool for Smalltalk”. Theory and Practice of Object Systems, Vol 3 Number 4, 1997.

[Roberts98]
D. Roberts, R. Johnson. “Patterns for Evolving Frameworks”. Pattern Languages of Program Design 3. Addisson Wesley, 1998

[Tokuda99] L. Tokuda, D. Batory.
“Evolving Object-Oriented Architectures with Refactorings”. FRED ADD MORE HERE***

� Literal values are instances of the class Symbol as defined in the standard library of Smalltalk classes.

PAGE
16

_984152273.doc

Observation

Infant

PhysicalMeasure

FeedingType

Hep-B Ind

GestationalAge

Weight

Height

_984257135.doc

anObservType

<#BloodPressure>

anObserType

<#SYSTOLIC>

anObser-Type

<#DIASTOLIC>

anotherMeasurement

<anotherQuantity>

aMeasurement

<aQuantity>

aCompObs

_984257403.doc

Observation

 isValid

 recordedDate

comments

CompositeObservation

Type

 ObservationType

 isValid: obsValue

 phenomenonType

Party

Primitive Observation

 observationValue

CompositeValidator

 logicOperand

CompositeObservation

PrimitiveObservation�Type

RangedValidator

 intervalSet

 validUnit

DiscreteValidator

 descriptorSet

Validator

 isValid: obsValue

 validatorName

NullValidator

Quantity

 unit

 quantity

convertTo:

_984260283.doc

anObserv-Type

<#COMP-GAL>

anObser-Type

<#GAL>

anObser-Type

<#UDT>

anotherMeasurement

<anotherQuantity>

anotherRangedValidator

aMeasurement

<aQuantity>

aCompObs

aRangedValidator

_984152980.doc

Observation

Infant

PhysicalMeasure

AlcoholProblem

HIV Status

Mother

GestationalAge

Weight

Height

_984167649.doc

 aQuantity

 value <36>

 unit <weeks>

 anObservationType

 #GestationalAge

 aMeasurement

 type

 value

anObser-Type

<#GAL>

anotherMeasurement

<anotherQuantity>

 anInfant

 name

obsCollection

aCompObs

anObser-Type

<#UDT>

aMeasurement

<aQuantity>

anObserv-Type

<#COMP-GAL>

 aDiscreteValidator

 anotherRangedValidator

 aRangedValidator

_983780901.doc

 aQuantity

 value <5>

 unit <ft>

 anObservationType

 #height

 aMeasurement

 type

 value

 aPerson

 name <Smith>

obsCollection

 anObservationType

 #eyeColor

 aTrait	

 type

 value <blue>

_983873833.doc

ObservationType

phenomenonType

validator

Validator

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnit

NullValidator

_983883074.doc

Observation

 RecordedDate

 comments

Measurement

 value

 value

 value:

 convertTo:

ObservationType

 phenomenonType

Party

Trait

 value

 value

 value:

Quantity

CompositeObservation

 values

_983873372.doc

Observation

Measurement

 convertTo:

Person

Trait

 traitValue

Quantity

 unit

 value

 convertTo:

Blood

PhysicalMeasure

HairColor

EyeColor

…

Gender

Weight

Height

…

_983780803.doc

Observation

Measurement

convertTo:

ObservationType

phenomenonType

Person

 name

Trait

traitValue

Quantity

 unit

 quantity

convertTo:

