 Authorization rules as metalevel constraints

 Eduardo B. Fernandez

 Dept. of Computer Science and Eng.

 Florida Atlantic University

 Boca Raton, FL 33431

 ed@cse.fau.edu

A computer system can be decomposed into a hierarchy of layers and various decompositions have been proposed. One of these considers functional and nonfunctional layers [Fer95]. As shown in Figure 1, the highest functional level is the application layer and security constraints can be considered as defining a filtering layer that allows users to access the application according to these constraints.

A fundamental aspect of current systems is that the highest level is not the database level as assumed in most of the current security literature, but the application level, where the conceptual enterprise models, both static and dynamic are defined. It is here where the security policies of the institution should be applied. At this level the semantics of the application is well understood and roles can be used to apply the need-to-know policy [Fer97].

[image: image1.wmf]CEO

Compan

y

Dept.

Head

Departme

nt

Project

Leader

Projec

t

right

s

right

s

right

s

1

1

1

1..*

1

1

..*

*

*

*

*

.

 Figure 1. The layers of a computer system

The lower levels enforce the restrictions defined at the security level [Fer99]. Authorization can be defined in terms of objects as shown in Figure 2 [Fer93], and applied to the conceptual level as shown in Figure 3 [Fer96].

[image: image2.wmf]Employee

ShopOrder

create

cut

pick

OrderEntryEmp

MfgEmp

create

cut

pick

Right

Right

*

*

*

*

 Figure 2. An authorization rule.

In other words, we can consider authorizations as defined at the metadata level. Other nonfunctional aspects, e.g., fault-tolerance, correspond to lower levels of the architecture as shown in Figure 1, but their specifications could also be defined at this level.

In fact, this is not really new, authorization restrictions in relational databases are stored as metadata, as is done in System R and later commercial versions of SQL databases.

In the application level we can define authorization patterns; for example, the authorization rule of Figure 2 is such a pattern. Another pattern that defines the rights of role hierarchies with respect to institution divisions, is shown in Figure 4. The general structure of Role-Based Access Control (RBAC) can be summarized as in Figure 5, which represents the model proposed by Sandhu et al. [San96]. In this figure, users are assigned to roles (UR mapping), roles are given permissions (PA mapping), users interact with the system through sessions, from where they activate roles. Roles can include other roles, described by the composite pattern. Finally, roles and permissions are divided into regular ones and administrative ones.

[image: image3.wmf]Authorization_rule

Subject

Data

data

_id

subject

_id

check

_rights

get_access_type

access

_type

predicate

copy

_flag

[image: image4.wmf]CEO

Compan

y

Dept.

Head

Departme

nt

Project

Leader

Projec

t

right

s

right

s

right

s

1

1

1

1..*

1

1

..*

*

*

*

*

 Figure 3. Authorizations at the conceptual level.

 Figure 4. A security pattern

Note that these constraints are really cross-level constraints since they apply to entities in the application level. To separate levels we can define proxy classes in the security level that represent the corresponding application classes.

These security patterns can be applied to analysis patterns to define semantic subsystems that combine the advantages of patterns with the advantages of high-level security definition [Fer98a]. Other security patterns at this level are defined in [Ess97] and [Yod97].

We can use reflection from the application to the metadata level to dynamically adapt to changing conditions. Either structural or channel reification are possible [Anc98]. Reflection patterns can be found in [Bus96] and [Fer98b]. In the case of reflection, the proxy classes described above become reification classes that can control the behavior of the application classes.

These patterns are just a beginning in the use of authorization in a metalevel. Many other patterns are possible and a catalog would be an interesting study. It should also be possible to define patterns that span levels to enforce the high-level security constraints.

[image: image5.wmf]Employee

ShopOrder

create

cut

pick

OrderEntryEmp

MfgEmp

create

cut

pick

Right

Right

*

*

*

*

 Figure 5. RBAC model

REFERENCES
 Anc99 M. Ancona, W. Cazzola, and E.B. Fernandez, "Reflective authorization

 systems: Possibilities, benefits, and drawbacks", in Secure Internet

 Programming, J. Vitek and C.D. Jensen (eds.), LNCS State of the Art Survey,

 LNCS 1603, Springer, 1999, 35-49.

Bus96 F. Buschmann et al., Reflection, in Pattern-oriented software architecture -- A

 system of patterns, J. Wiley & Sons, 1996, 193- 219.

Ess97 W. Essmayr, G. Pernul, and A.M. Tjoa, "Access controls by object-oriented

 concepts", Proc. of 11th IFIP WG 11.3 Working Conf. on Database Security,

 August 1997.

 Fer93 E.B.Fernandez,M.M.Larrondo-Petrie and E.Gudes, "A method-based authorization

 model for object-oriented databases", Proc. of the OOPSLA 1993 Workshop on
 Security in Object-oriented Systems , 70-79.

 Fer96 E.B.Fernandez et al., “High-level security issues in multimedia / hypertext systems”,

 in Communications and Multimedia Security II , P. Horster (Ed.) , Chapman & Hall,

 1996, 13-24.

 Fer97 E.B.Fernandez and J.C.Hawkins, “Determining role rights from use cases”, Procs. 2nd
 ACM Workshop on Role-Based Access Control, November 1997, 121-125.

 Fer98a E.B.Fernandez , "Building systems using analysis patterns", Procs. 3rd. Intl.Soft. Arch.

 Workshop (ISAW3), November 1998, 37-40.

Fer98b L.L.Ferreira, and C.M.F.Rubira, "The reflective state pattern", Procs. PloP99,
 http://jerry.cs.uiuc.edu/~plop/plop98/final-submissions

Fer99 E.B. Fernandez, Coordination of security levels for Internet architectures, Procs. 10th

 Int. Workshop on Elect. Commerce and Security, in DEXA'99, Florence, 1999.

San96 R.Sandhu et al., "Role-Based Access Control models", Computer , vol. 29 , No2,

 February 1996, 38-47.

Yod97 J. Yoder and J. Barcalow, "Architectural patterns for enabling application security".

 Procs. PLOP97, http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image6.emf]User

 (U)

Role

 (R)

Permission

 (P)

Works on

1

*

*

* * *

*

*

Simple

 Role

Composite

 Role

*

subset

Session

 (S)

Admin Role

 (AR)

Admin Perm-

ission (AP)

UR

PA

{ User cannot be

in AR & in a

general role }

Activated

From

[image: image7.emf] SECURITY LAYER

APPLICATION LAYER

 TIME LAYER

FAULT TOLERANCE LAYER

CONFIGURATION LAYER

PROCESSOR LAYER

obj1 obj2

obj1 obj3

obj2

attributes

operations

cooperating

processes

replicated task

processor structure

[image: image8.wmf]Authorization_rule

Subject

Data

data

_id

subject

_id

check

_rights

get_access_type

access

_type

predicate

copy

_flag

_1000022891.doc

CEO

Company

Dept. Head

Department

Project Leader

Project

rights

rights

rights

1 1

1 1..*

1

 1..*

*

*

*

*

_1000120323.doc

copy_flag

predicate

access_type

 get_access_type

check_rights

subject_id

data_id

Data

Subject

Authorization_rule

_1000022817.doc

Employee

ShopOrder

create

cut

pick

OrderEntryEmp

MfgEmp

create

cut

pick

Right

Right

*

*

*

*

